LECTURE 10

SIMPLE REGRESSION MODEL - II

Outline of today's lecture:

I. Mean and Variance of the Dependent Variable Y	1
II. Ordinary Least Squares (OLS) Estimation	2
A. Mean of $\hat{\beta}_1$	6
B. Variance of $\hat{\beta}_1$	9
C. Mean of $\hat{\beta}_0$	10
D. Variance of $\hat{\beta}_0$	11
E. Covariance of $\hat{\beta}_0$ and $\hat{\beta}_1$	13

I. Mean and Variance of the Dependent Variable Y

The dependent variable Y has mean

$$E(Y_t) = \beta_0 + \beta_1 X_t$$

and variance

$$Var(Y_t) = E\left[Y_t - E(Y_t)\right]^2 = E(u_t^2) = \sigma^2$$

1. Let us show that the mean of Y_t *is* $\beta_0 + \beta_1 X_t$. \rightarrow

By definition the mean of Y_t is its expected value.

Given that $Y_t = \beta_0 + \beta_1 X_t + u_t$. Taking the expected values we get

$$E(Y_t) = E[\beta_0 + \beta_1 X_t + u_t]$$
$$E(Y_t) = E[\beta_0 + \beta_1 X_t] + E[u_t]$$

Given that β_0 and β_1 are parameters and by Assumption 2 the values of X_t 's are a set of fixed numbers (in the process of hypothetical sampling)

$$E[\beta_0 + \beta_1 X_t] = \beta_0 + \beta_1 X_t$$

Furthermore, by Assumption 3, $E(u_t) = 0$.

Therefore,

$$E(Y_t) = \beta_0 + \beta_1 X_t$$

2. Let us now show that the variance of Y_t is σ^2

$$Var(Y_t) = E \Big[Y_t - E(Y_t) \Big]^2$$
$$Var(Y_t) = E \Big[\beta_0 + \beta_1 X_t + u_t - \beta_0 + \beta_1 X_t \Big]^2$$
$$Var(Y_t) = E \Big[u_t \Big]^2$$

By Assumption 4, the u_t 's are homoscedastic, that is, they have the constant variance σ^2

$$Var(Y_t) = E[u_t]^2 = \sigma^2$$

II. Ordinary Least Squares (OLS) Estimation

• The two-variable *population regression function* is given by

$$Y_t = \beta_0 + \beta_1 X_t + u_t,$$

but we do not observe it.

• Hence we estimate it from the *sample regression function*

$$Y_t = \underbrace{\hat{\beta}_0 + \hat{\beta}_1 X_t}_{\hat{Y_t}} + \hat{u}_t \,.$$

or $Y_t = \hat{Y}_t + \hat{u}_t$.

• We can rewrite the sample regression function as

$$\hat{u}_t = Y_t - \hat{Y}_t = Y_t - \hat{\beta}_0 - \hat{\beta}_1 X_t.$$

- In other words, the residuals are the differences between the actual and the estimated Y_t values.
- With *T* observations, we want to choose $\hat{\beta}_0$ and $\hat{\beta}_1$ such that the sum of the residuals is minimized: $\sum_{t=1}^{T} \hat{u}_t = \sum_{t=1}^{T} (Y_t \hat{Y}_t)$.

FIGURE 3.1 Least-squares criterion.

• this turns out not to be a very good rule because some residuals are negative and some are positive (and they would cancel each other), and

- all residuals have the same weight (importance) even though some are small and some are large.
 - ✓ To overcome these problems, we use the squares of the residuals instead of their own values.

Ordinary Least Squares (OLS) criterion:

Minimize
$$\sum \hat{u_t}^2 = \sum (Y_t - \hat{Y_t})^2 = \sum (Y_t - \hat{\beta}_0 - \hat{\beta}_1 X_t)^2$$

wrt $\hat{\beta}_1$ and $\hat{\beta}_2$

The necessary condition for a minimum is that the first derivatives of the function be equal to zero.

Partial differentiation yields

$$\frac{\partial (\sum \hat{u}_t^2)}{\partial \hat{\beta}_0} = -2\sum (Y_t - \hat{\beta}_0 - \hat{\beta}_1 X_t) = 0$$
⁽¹⁾

$$\frac{\partial (\sum \hat{u_t}^2)}{\partial \hat{\beta}_1} = -2\sum (Y_t - \hat{\beta}_0 - \hat{\beta}_1 X_t) X_t = 0$$
(2)

From (1)

$$\sum_{t=1}^{T} (Y_t - \hat{\beta}_0 - \hat{\beta}_1 X_t) = 0$$

$$\sum_{t=1}^{T} Y_t - T \cdot \hat{\beta}_0 - \hat{\beta}_1 \sum_{t=1}^{T} X_t = 0$$

$$T \cdot \hat{\beta}_0 = \sum_{t=1}^{T} Y_t - \hat{\beta}_1 \sum_{t=1}^{T} X_t$$

$$\hat{\beta}_0 = \frac{\sum_{t=1}^{T} Y_t}{T} - \hat{\beta}_1 \frac{\sum_{t=1}^{T} X_t}{T}$$

$$\Rightarrow \hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

From (2)

$$\begin{split} &\sum_{t=1}^{T} (Y_t - \hat{\beta}_0 - \hat{\beta}_1 X_t) X_t = 0 \\ &\sum_{t=1}^{T} Y_t X_t - \hat{\beta}_0 \sum_{t=1}^{T} X_t - \hat{\beta}_1 \sum_{t=1}^{T} X_t^2 = 0 \\ &\sum_{t=1}^{T} Y_t X_t = \hat{\beta}_0 \sum_{t=1}^{T} X_t + \hat{\beta}_1 \sum_{t=1}^{T} X_t^2 \\ &\sum_{t=1}^{T} Y_t X_t = \left[\bar{Y} - \hat{\beta}_1 \bar{X} \right] \sum_{\substack{t=1\\T,\bar{X}}}^{T} X_t + \hat{\beta}_1 \sum_{t=1}^{T} X_t^2 \\ &\sum_{t=1}^{T} Y_t X_t = T.\bar{Y}.\bar{X} - \hat{\beta}_1 T.\bar{X}.\bar{X} + \hat{\beta}_1 \sum_{t=1}^{T} X_t^2 \\ &\sum_{t=1}^{T} Y_t X_t - T.\bar{Y}.\bar{X} = \hat{\beta}_1 \sum_{t=1}^{T} X_t^2 - \hat{\beta}_1 T.\bar{X}.\bar{X} \\ &\sum_{t=1}^{T} Y_t X_t - T.\bar{Y}.\bar{X} = \hat{\beta}_1 \left[\sum_{t=1}^{T} X_t^2 - \hat{\beta}_1 T.\bar{X}.\bar{X} \right] \\ &\implies \hat{\beta}_1 = \frac{\sum_{t=1}^{T} Y_t X_t - T.\bar{Y}.\bar{X}}{\sum_{t=1}^{T} X_t^2 - T.\bar{X}^2} \end{split}$$

Note that

$$\begin{split} \sum_{t=1}^{T} x_t^2 &= \sum_{t=1}^{T} (X_t - \bar{X})^2 = \sum_{t=1}^{T} X_t^2 - 2\sum_{t=1}^{T} X_t \bar{X} + \sum_{t=1}^{T} \bar{X}^2 \\ &= \sum_{t=1}^{T} X_t^2 - 2\bar{X} \sum_{t=1}^{T} X_t + T. \bar{X}^2 = \sum_{t=1}^{T} X_t^2 - 2T\bar{X}^2 + T. \bar{X}^2 \\ &= \sum_{t=1}^{T} X_t^2 - T\bar{X}^2 \end{split}$$

and

$$\begin{split} \sum_{t=1}^{T} x_t y_t &= \sum_{t=1}^{T} (X_t - \bar{X})(Y_t - \bar{Y}) = \sum_{t=1}^{T} (X_t Y_t - X_t \bar{Y} - \bar{X} Y_t + \bar{Y} \bar{X}) \\ &= \sum_{t=1}^{T} X_t Y_t - \bar{X} \sum_{t=1}^{T} Y_t - \bar{Y} \sum_{t=1}^{T} X_t + \sum_{t=1}^{T} \bar{Y} \bar{X} \\ &= \sum_{t=1}^{T} X_t Y_t - \bar{X} T \bar{Y} - \bar{Y} T \bar{X} + T \bar{Y} \bar{X} = \sum_{t=1}^{T} X_t Y_t - T \bar{X} \bar{Y} \end{split}$$

Hence the OLS estimator can also be written as in mean-deviation form as follows:

$$\Rightarrow \hat{\beta}_1 = \frac{\sum_{t=1}^T x_t y_t}{\sum_{t=1}^T x_t^2}$$

A. Mean of $\hat{\beta}_1$

We assume that we draw repeated samples of size *T* from the population of *Y* and *X*, and for each sample we estimate the parameters $\hat{\beta}_0$ and $\hat{\beta}_1$. This is known as hypothetical repeated sampling procedure. If all the possible samples are taken, then the mean value of $\hat{\beta}_1$ will be its expected value, (mean $\hat{\beta}_1$)= $E(\hat{\beta}_1)$. To find the value of the mean in terms of the observations of our sample of *Y* and *X* we work as follows.

We found that
$$\hat{\beta}_1 = \frac{\sum_{t=1}^T x_t y_t}{\sum_{t=1}^T x_t^2}$$
.

Substituting $y_t = Y_t - \overline{Y}$ we obtain

But by definition, the sum of the deviations of a variable from its mean is identically equal to zero, $\sum_{t=1}^{T} x_t = 0$. Therefore

$$\hat{\beta}_{1} = \frac{\sum_{t=1}^{T} x_{t} Y_{t}}{\sum_{t=1}^{T} x_{t}^{2}} = \sum_{t=1}^{T} \left(\frac{x_{t}}{\sum_{t=1}^{T} x_{t}^{2}} \cdot Y_{t} \right)$$

By **assumption 2** of the method of least squares, the values of *X* are a set of fixed values, which do not change from sample to sample. Consequently the ratio $\frac{x_t}{\sum_{t=1}^{T} x_t^2}$ will be constant from sample to

sample, and if we denote the ratio by a_t we may write the estimator $\hat{\beta}_1$ in the form $\hat{\beta}_1 = \sum_{t=1}^T a_t Y_t$.

By substituting the value of $Y_t = \beta_0 + \beta_1 X_t + u_t$ and rearranging the factors we find

$$\hat{\beta}_{1} = \sum_{t=1}^{T} a_{t} \left(\beta_{0} + \beta_{1} X_{t} + u_{t} \right)$$
$$\hat{\beta}_{1} = \beta_{0} \sum_{t=1}^{T} a_{t} + \beta_{1} \sum_{t=1}^{T} a_{t} X_{t} + \sum_{t=1}^{T} a_{t} u_{t}$$

Note (and show) that $\sum_{t=1}^{T} a_t = 0$ and $\sum_{t=1}^{T} a_t X_t = 1$.

Therefore, the equation above reduces to

Instructor: H. Ozan ERUYGUR

$$\hat{\beta}_1 = \beta_1 + \sum_{t=1}^T a_t u_t$$

which implies that $\hat{\beta}_1$ is a linear estimator because it is a linear function of *Y*; actually it is a weighted average of *Y_t* with *a_t* serving as the weights.

Taking expected values yields

$$E(\hat{\beta}_1) = E(\beta_1) + \sum_{t=1}^T a_t E[u_t]$$

The significance of the assumption of *constant X values* is seen in the above manipulations, in that the operation of taking expected values is applied to u and Y values <u>but not to</u> X.

Since β_1 (the true population parameter) is constant, we can write $E(\beta_1) = \beta_1$. Finally using **assumption 3**, we have $E[u_t] = 0$.

Hence, the equation reduces to

$$\underbrace{E(\hat{\beta}_1)}_{mean of \hat{\beta}_1} = \beta_1$$

which implies that the mean of OLS estimate $\hat{\beta}_1$ is equal to the true value of the population parameter β_1 .

This implies that the $\hat{\beta}_1$ is an *unbiased* estimator.

B. Variance of $\hat{\beta}_1$

It can be proved that
$$Var(\hat{\beta}_1) = E\left[\hat{\beta}_1 - E(\hat{\beta}_1)\right]^2 = E\left[\hat{\beta}_1 - \beta_1\right]^2 = \frac{\sigma^2}{\sum_{t=1}^T x_t^2}.$$

To show this, recall that we established $\hat{\beta}_1 = \sum_{t=1}^T a_t Y_t$ where $a_t = \frac{x_t}{\sum_{t=1}^T x_t^2}$ = constant weights in the process of hypothetical repeated

sampling.

Therefore,

$$Var(\hat{\beta}_{1}) = Var(\sum_{t=1}^{T} a_{t}Y_{t}) = \sum_{t=1}^{T} a_{t}^{2} Var(Y_{t})$$

given that $a_t = \frac{x_t}{\sum_{t=1}^{T} x_t^2}$ are constant weights, independent of the values of Y_t by Assumption 2.

However, recall that $Var(Y_t) = \sigma^2$.

Therefore,

$$Var(\hat{\beta}_{1}) = \sigma^{2} \sum_{t=1}^{T} a_{t}^{2} = \sigma^{2} \left[\sum_{t=1}^{T} \frac{x_{t}^{2}}{\left(\sum_{t=1}^{T} x_{t}^{2}\right)^{2}} \right] = \sigma^{2} \left[\frac{\sum_{t=1}^{T} x_{t}^{2}}{\left(\sum_{t=1}^{T} x_{t}^{2}\right)^{2}} \right] = \frac{\sigma^{2}}{\sum_{t=1}^{T} x_{t}^{2}}$$

C. Mean of $\hat{\beta}_0$

In the last lecture, we have established that

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

Substituting $\hat{\beta}_1 = \sum_{t=1}^T a_t Y_t$ we obtain:

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

$$\hat{\beta}_0 = \overline{Y} - \overline{X} \sum_{t=1}^T a_t Y_t$$

$$\hat{\beta}_0 = \frac{\sum_{t=1}^T Y_t}{T} - \overline{X} \sum_{t=1}^T a_t Y_t$$

Taking Y_t as the common factor, we may write:

$$\hat{\beta}_0 = \sum_{t=1}^T \left[\frac{1}{T} - \bar{X}a_t \right] Y_t$$

Here, denoting $\frac{1}{T} - \bar{X}a_t = b_t$, we can write the equation as

$$\hat{\beta}_0 = \sum_{t=1}^T b_t Y_t$$

which implies that $\hat{\beta}_0$ is a <u>linear estimator</u>.

Taking expected values

$$E(\hat{\beta}_0) = \sum_{t=1}^T \left[\frac{1}{T} - \bar{X}a_t \right] E(Y_t)$$

given that T, \overline{X} and a_t are constant from sample to sample.

In the last lecture, we have derived that $E(Y_t) = \beta_0 + \beta_1 X_t$.

Therefore

$$\begin{split} E(\hat{\beta}_{0}) &= \sum_{t=1}^{T} \left[\frac{1}{T} - \bar{X}a_{t} \right] (\beta_{0} + \beta_{1}X_{t}) \\ E(\hat{\beta}_{0}) &= \sum_{t=1}^{T} \left[\frac{\beta_{0}}{T} - \bar{X}a_{t}\beta_{0} + \frac{\beta_{1}X_{t}}{T} - \bar{X}a_{t}\beta_{1}X_{t} \right] \\ E(\hat{\beta}_{0}) &= \sum_{t=1}^{T} \frac{\beta_{0}}{T} - \bar{X}\beta_{0}\sum_{\substack{t=1\\0}}^{T} a_{t} + \beta_{1}\sum_{t=1}^{T} \frac{X_{t}}{T} - \bar{X}\beta_{1}\sum_{\substack{t=1\\1}}^{T} a_{t}X_{t} \\ E(\hat{\beta}_{0}) &= \beta_{0} + \beta_{1}\bar{X} - \beta_{1}\bar{X} \\ E(\hat{\beta}_{0}) &= \beta_{0} \end{split}$$

Hence $\hat{\beta}_0$ is an <u>unbiased estimator</u> of β_0 .

A similar proof can be done using the notation $\hat{\beta}_0 = \sum_{t=1}^T b_t Y_t$, with the help of $\sum_{t=1}^T b_t = 1$ and $\sum_{t=1}^T b_t X_t = 0$ (Show that $\sum_{t=1}^T b_t = 1$ and $\sum_{t=1}^T b_t X_t = 0$).

D. Variance of $\hat{\beta}_0$

We established that

$$\hat{\beta}_0 = \sum_{t=1}^T b_t Y_t$$
$$\hat{\beta}_0 = \sum_{t=1}^T \left[\frac{1}{T} - \bar{X} a_t \right] Y_t$$

Therefore

$$Var(\hat{\beta}_{0}) = Var\left[\sum_{t=1}^{T} b_{t}Y_{t}\right]$$
$$Var(\hat{\beta}_{0}) = Var\left[Y_{t}\right]\sum_{t=1}^{T} b_{t}^{2}$$
$$Var(\hat{\beta}_{0}) = \sigma^{2}\sum_{t=1}^{T} b_{t}^{2}$$
$$Var(\hat{\beta}_{0}) = \sigma^{2}\sum_{t=1}^{T} \left(\frac{1}{T} - \bar{X}a_{t}\right)^{2}$$
$$Var(\hat{\beta}_{0}) = \sigma^{2}\sum_{t=1}^{T} \left(\frac{1}{T^{2}} - \frac{2\bar{X}a_{t}}{T} + \bar{X}^{2}a_{t}^{2}\right)$$

Thus,

$$Var(\hat{\beta}_{0}) = \sigma^{2} \left[\frac{1}{T} - \frac{2\bar{X}}{T} \sum_{t=1}^{T} a_{t} + \bar{X}^{2} \sum_{t=1}^{T} a_{t}^{2} \right]$$
$$Var(\hat{\beta}_{0}) = \sigma^{2} \left[\frac{1}{T} - \frac{2\bar{X}}{T} \sum_{t=1}^{T} a_{t} + \bar{X}^{2} \sum_{t=1}^{T} a_{t}^{2} \right]$$

Since
$$\sum_{t=1}^{T} a_t = 0$$
 and $\sum_{t=1}^{T} a_t^2 = \frac{1}{\sum_{t=1}^{T} x_t^2}$, we obtain

$$Var(\hat{\beta}_{0}) = \sigma^{2} \left[\frac{1}{T} + \frac{\bar{X}^{2}}{\sum_{t=1}^{T} x_{t}^{2}} \right] \Rightarrow Var(\hat{\beta}_{0}) = \sigma^{2} \left[\frac{\sum_{t=1}^{T} x_{t}^{2} + T\bar{X}^{2}}{T\sum_{t=1}^{T} x_{t}^{2}} \right]$$

Recall that $\sum_{t=1}^{T} x_t^2 = \sum_{t=1}^{T} X_t^2 - T\bar{X}^2$. This implies that $\sum_{t=1}^{T} x_t^2 + T\bar{X}^2 = \sum_{t=1}^{T} X_t^2$. Hence, the variance of $\hat{\beta}_0$ is obtained as follows:

$$Var(\hat{\beta}_{0}) = \sigma^{2} \frac{\sum_{t=1}^{T} X_{t}^{2}}{T \sum_{t=1}^{T} x_{t}^{2}}$$

E. Covariance of \hat{eta}_0 and \hat{eta}_1

$$Cov(\hat{\beta}_{0},\hat{\beta}_{1}) = E\left[\hat{\beta}_{0} - E(\hat{\beta}_{0})\right]\left[\hat{\beta}_{1} - E(\hat{\beta}_{1})\right]$$

$$Cov(\hat{\beta}_{0},\hat{\beta}_{1}) = E\left[\frac{\hat{\beta}_{0} - E(\hat{\beta}_{0})}{\frac{-\bar{X}(\hat{\beta}_{1} - \beta_{1})}{Why?Seebelow!}}\right]\left[\hat{\beta}_{1} - \frac{E(\hat{\beta}_{1})}{\beta_{1}}\right]$$

$$Cov(\hat{\beta}_{0},\hat{\beta}_{1}) = E\left[-\bar{X}(\hat{\beta}_{1} - \beta_{1})\right]\left[\hat{\beta}_{1} - \beta_{1}\right]$$

$$Cov(\hat{\beta}_{0},\hat{\beta}_{1}) = -\bar{X}\cdot\underbrace{E\left[\hat{\beta}_{1} - \beta_{1}\right]^{2}}_{Var(\hat{\beta}_{1})}$$

$$Cov(\hat{\beta}_{0},\hat{\beta}_{1}) = -\bar{X}\cdot\underbrace{Var(\hat{\beta}_{1})}_{\sigma^{2}/\sum_{t=1}^{T}x_{t}^{2}}$$

$$\Rightarrow Cov(\hat{\beta}_{0},\hat{\beta}_{1}) = -\bar{X}\cdot\frac{\sigma^{2}}{\sum_{t=1}^{T}x_{t}^{2}}$$

Obtaining the covariance expression, we have used the following equality: $\hat{\beta}_0 - E(\hat{\beta}_0) = -\overline{X}(\hat{\beta}_1 - \beta_1)$. Let us show how we can obtain this relationship, below.

Recall that:

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$
, which yields $E(\hat{\beta}_0) = \overline{Y} - E(\hat{\beta}_1)\overline{X}$. Hence, we get:
 $E(\hat{\beta}_0) = \overline{Y} - \beta_1 \overline{X}$

Therefore,

$$\hat{\beta}_{0} = \overline{Y} - \hat{\beta}_{1}\overline{X}$$

$$E(\hat{\beta}_{0}) = \overline{Y} - \beta_{1}\overline{X}$$

$$\hat{\beta}_{0} - E(\hat{\beta}_{0}) = -\hat{\beta}_{1}\overline{X} + \beta_{1}\overline{X}$$

$$\Rightarrow \hat{\beta}_{0} - E(\hat{\beta}_{0}) = -\overline{X}(\hat{\beta}_{1} - \beta_{1})$$