Middle East Technical University Department of Economics ECON 206

Instructor: Ozan ERUYGUR Research Assistant: Pelin AKÇAGÜN

PROBLEM SET 07

PROBLEM 1

Suppose a researcher wants to estimate the parameters in the simple population equation

 $Y = \beta_0 + \beta_1 X + u$

The following data which were calculated from a sample of 10 observations are available.

 $\Sigma Y = 580$ $\Sigma xy = -654$ $\Sigma X = 50$ $\Sigma y^2 = 7568$ $\Sigma XY = 2246$ $\Sigma x^2 = 60$ $\Sigma Y^2 = 41208$ $\Sigma X^2 = 310$

- a. Obtain least square estimates of β_0 and β_1 .
- b. Compute \mathbb{R}^2 . Given an interpretation for the coefficients of determination.
- c. Test if the model must have an intercept term (take $\alpha = 0.05$).
- d. Test if the slope coefficient is different from zero (take $\alpha = 0.05$).
- e. Construct the 99 % confidence interval for β_1 .

PROBLEM 2

Suppose you want to estimate the following export supply function for commodity Z:

$$Y_{t} = b_{0} + b_{1}X_{t} + u_{t}$$

Given the following information for 10 years:

$$\overline{X} = 5, \ \overline{Y} = 6, \ \sum X_t Y_t = 353, \ \sum X_t^2 = 304, \ \sum Y_t^2 = 428,$$

where, Y_t = Quantity supplied for exports of commodity Z (mil. tons)

 $X_t =$ Export price (\$ per ton)

- a. Obtain the OLS estimates of b_0 and b_1 .
- b. Compute R^2 . Give an interpretation for the coefficients of determination.
- c. Test the hypothesis that the quantity supplied and the price is positively related (Take α =0.05).
- d. Test if export supply function should have an intercept term (Take α =0.05).

PROBLEM 3

Consider the following demand function for chicken (1960-1982):

$$\ln Y_{t} = \beta_{0} + \beta_{1} \ln X_{t1} + \beta_{2} \ln X_{t2} + \beta_{3} \ln X_{t3} + \beta_{4} \ln X_{t4} + u_{t}$$

where Y = per capita consumption of chicken, $X_1 =$ real disposable per capita income, $X_2 =$ real retail price of chicken, $X_3 =$ real retail price of pork, and $X_4 =$ real retail price of beef.

You are given the following regression results.

(Model 1)
$$\widehat{\ln Y_{t}} = 2.1898 + 0.3425 X_{t1} - 0.5046 X_{t2} + 0.1485 X_{t3} + 0.0911 X_{t4}$$
$$SSR=0.013703, R^{2}=0.98231$$

(Model 2)
$$\widehat{\ln Y_t} = 2.0328 + 0.4515 X_{t1} - 0.3772 X_{t2}$$

SSR= 0.015437, R²=0.98007

(Model 3)
$$\widehat{\ln Y_t} = 1.4910 + 0.18260 X_{t3} - 0.28695 X_{t4}$$

SSR= 0.089951, R²=0.88390

(Model 4)
$$\widehat{\ln Y_t} = 3.6639_{(0.0391)}$$

 $SSR = 0.77475, R^2 = ?$

- a. Test the significance of each terms individually in Model (1) (Take α =0.05).
- b. Test joint significance of the slope terms in Model (1) (Take α =0.05).
- c. What do the coefficients of X_1 , X_2 , X_3 and X_4 (i.e., β_1 , β_2 , β_3 , and β_4) denote in economic theory?
- d. What is your theoretical expectation about the sign of β_1 ? Test your *claim* at 0.05 level of significance using Model (1).
- e. Suppose someone *claims* that chicken and beef are *complementary* products. Test this claim at 0.05 level of significance using Model (1).
- f. Test the hypothesis that $H_0:\beta_3=\beta_4=0$ and interpret your results. (Take $\alpha=0.05$).
- g. What would be the R^2 of Model (4)?