Instructor: Ozan ERUYGUR Research Assistant: Pelin AKÇAGÜN

PROBLEM SET 01 EXPECTATION AND VARIANCE OPERATORS

PROBLEM 1 (Exercise 4.17 from textbook)

Prove Theorem 4.5.

Theorem 4.5: Let c be a constant, and let g(Y), $g_1(Y)$, $g_2(Y)$, ..., $g_k(Y)$ be functions of a continuous random variable *Y*. Then the following results hold:

- 1. E(c) = c.
- 2. E[cg(Y)] = cE[g(Y)].
- 3. $E[g_1(Y) + g_2(Y) + ... + g_k(Y)] = E[g_1(Y)] + E[g_2(Y)] + ... + E[g_k(Y)].$

PROBLEM 2 (Exercise 4.18 from textbook)

If *Y* is a continuous random variable with density function f(Y), use Theorem 4.5 to prove that $\sigma^2 = V(Y) = E(Y^2) - [E(Y)]^2$.

PROBLEM 3 (Exercise 4.20 from textbook)

If *Y* is a continuous random variable with mean μ and variance σ^2 and *a* and *b* are constants, use Theorem 4.5 to prove the following:

- a. $E(aY+b)=aE(Y)+b=a\mu+b$.
- b. $V(aY+b) = a^2 V(Y) = a^2 \sigma^2$

PROBLEM 4 (Exercise 4.24 from textbook)

The proportion of time *Y* that an industrial robot is in operation during a 40-hour week is a random variable with probability density function

$$f(y) = \begin{cases} 2y & , & 0 \le y \le 1 \\ 0 & , & elsewhere \end{cases}$$

a. Find E(Y) and V(Y).

- b. For the robot under study, the profit *X* for a week is given by X = 200Y 60. Find E(X) and V(X).
- c. Find an interval in which the profit should lie for *at least* 75% of the weeks that the robot is in use.

PROBLEM 5

Let $X \sim N(\mu, \sigma^2)$. Use the algebra of expectations and find $Var(\overline{X})$.

PROBLEM 6

Let $X \sim N(\mu, \sigma^2)$. Use the algebra of expectations and find $E(\overline{X}^2)$.

PROBLEM 7

Let $Z = \frac{X - \mu}{\sigma}$ where $X \sim N(\mu, \sigma^2)$. Use the algebra of expectations and find E(Z) and V(Z).

PROBLEM 8

Using the properties of the expectation operator, show that;

- a. $Var(aX) = a^2 Var(X)$
- b. $Var(a+bX) = b^2 Var(X)$

PROBLEM 9

If X and Y are two random variables and a and b are constants, prove that;

- a. Var(X+a) = Var(X)
- b. Var(Y+b) = Var(Y)

PROBLEM 10

 X_1, X_2, X_3 are independent random variables such that $E(X_i) = 0$ and $E(X_i^2) = 1$. Calculate $E[X_1^2(X_2 - 4X_3)^2]$.

PROBLEM 11 (Exercise 7.7, excluding c, from textbook)

Suppose that $X_1, X_2..., X_m$ and $Y_1, Y_2, ..., Y_n$ are independent random samples with the variables X_i normally distributed with mean μ_1 and variance σ_1^2 and the variables Y_i normally distributed with mean μ_2 and variance σ_2^2 . The difference between the sample means, $\overline{X} - \overline{Y}$, is then a linear combination of m+n normally distributed random variables and, by Theorem 6.3, is itself normally distributed.

- a. Find $E(\overline{X} \overline{Y})$.
- b. Find V $(\overline{X} \overline{Y})$.