1 ARALIK DERSİ

STATA

webuse lutkepohl2 (common file)(dataset)

plot a graph graphics -> twoway graph ->create -> select Y variable as ln_consump and X variable as qtr ->For basic plots, select line ->accept -> ok

Grafik önümüze çıkıyor, smooth olduğu için random walk with a drift and trend'I seç

Statistics -> time series->tests->augmented dickey fuller unit root test->variable is ln_consump -> include trend in the regression -> ok

Suppress constant term in the regression = pure random walk Include trend in the regression = random walk with drift and trend Include drift term in the regression = random walk with drift

If test statistics is more negative than 5% critical value, you reject the null hypothesis Null hypothesis = there is unit root

In our example, ln_consump has a unit root bc test statistics is not more negative than 5% critical value

If reported test statistics is not negative, do not continue this test

If you choose pure random walk which is a smaller version, most probably reported test statistics will be positive

Even if we use random walk with drift and trend, we can get a positive test statistics value, the reason for that is seasonality(mevsimsellik)

To solve this problem, you can deseasonalize the data. Or you can use another test. Turksat'ta mevsimsellikten arındırılmış data var, onu kullanabiliriz.

Testing the unit root of ln_consump $\Delta ln_consump(t) = a0+a1*t+ \theta ln_consump(t-1)+u(t)$ \downarrow Constant Trend term(must be added)

For this purpose, we need to create/generate trend term in stata gen t = n

data editor(edit)- click on this

D.ln_consump yaparsan delta yapmışsın gibi oluyor, first difference'I alıyor D1.ln_consump yaparsan da aynı

DD.ln_consump = D2.ln_consump

L.ln_consump yaparsak da ilk lagini alıyor L2.ln_consump yaparsak ikinci lagini alıyor

HOW TO WRITE REGRESSION IN STATA

regress dependent variable expl.var1 expl.var2

böyle yazarsak constant otomatik olarak ekleniyor

örnek regress Y X Z yazarsak

 $Y(t) = \beta(0) + \beta(1)X(t) + \beta(2)Z(t) + u(t)$

Note: If you don't want to include constant term, regress Y X Z, no constant

Operators are not case sensitive, but variables are

regress d.ln_consump t L.ln_consump

Yanlış olmasının nedeni stata unit root testing yaptığımızı bilmiyor, sadece regressionla ilgileniyor

To carry out autocorrelation test, Breush Godfrey (BG)-LM test

estat bgodfrey

reusch-Godfrey L	M test for autocorr	elation	
lags(p)	chi2	df	Prob > chi2
1	0.541	1	0.4619

Hence there is no autocorrelation in the auxiliary regression. So the reported dfuller test can be trusted. This test is an application of DF test beacuse we did not need to add any lags to solve the AC problem.

Phillips Perron Test (PP)

This is a DF variant test

Null hypothesis: there is unit root

Main advantage of this test, you don't need to add any lags to the auxiliary regression to solve autocorrelation. Automatically, PP test uses the AC robust standard errors so that the reported tests values become valid even if there is autocorrelation

DF-GLS UNIT ROOT TEST

Advantage: If your data(variable) shows a clear trend, this trend reported as more powerful in the literature based on some monte carlo studies about its power.

Go to statistics ->time series ->tests->DF GLS test for a unit root->variable is ln_consump Presentle başlayan seçeneği seçiyor olabiliriz

KPSS TEST FOR UNIT ROOT

This is not a DF variant test. Its null hypothesis is "there is no unit root". Since it is not a DF variant test, you do not need to check if the tau statistics is negative. The test statistics of KPSS is positive.

Generally, it is advised to report this test together with DF test (or DF variant tests) because it is a completely different test. It looks to the situation from a different point of view so drawing the same conclusion with this test and, say, DF test is generally accepted a better result (more trustable)

Unfortunately, this is not included in the core installation of Stata. You need to install it. This is a add-in (ado file) written by a researcher. To install any add-in (ado files) in Stata you need to run following commend: SSC install the name of commend SSC install KPSS

kpss ln_consump, qs auto ile run edin dedi

Test statistics is far from the 5% critical value, reject the null hypothesis The null hypothesis was there is no unit root, so there is unit root

THE ORDER OF INTEGRATION

If you need to take first difference of a variable to remove the unit root in this series, then this series is called "series which integrated of first order" and say for any Y(t), it is dusted by

Y(t)~I(1)

Y(t) has a unit root if you take first difference, it will not have unit root. If taking first difference is not enough to remove unit root, you take another difference.

 $\Delta\Delta Y(t)$ or $\Delta^2 Y(t)$

Generally, economic variables are expected to be integrated of order 1. In some cases, it may be I(2). But never I(3) or more.

Remark: For any variable, without unit root, we don't need to take any difference.

Y(t)~I(0)

Why do we care about the order of integration?

We care it because to check if there is cointegration (LR relationship in economics) If we have 3 variables in the regression, all of them must be same order of integration

For stata,

dfuller ln_consump, trend lags(0) this tests only show ln_consump has a unit root

graphics -> two way graph-> we have plot 1, we can edit it, change the Y variable to d.ln_consump->accept->ok

statistics->time series->augmented dickey fuller unit root test->change the Y variable to d.ln_consum and click only to suppress constant term in the regression bc pure random walk is the best for our situation

test statistics is more negative than 5% critical value so you reject the null hypothesis so there is no unit root in Δ ln_consump

which means

∆ln_consump~I(0) ln_consump~I(1)

PP Test

Statistics-> time series ->tests->Phillips Perron unit root test -> change the Y variable to d.ln_consum and click only to suppress constant term in the regression

Focus on just the Z(t) column, test statistics is more negative than 5% critical value, reject the null hypothesis which means

Δln_consump~I(0) ln_consump~I(1)

Trend yoksa buna bas

Main if/in	it root	-		×
Variable: d.ln_consump		Tim	e settings.	
Options	Dickey-Fuller GLS regressions 다			
 Series is stationary around a mean in Present interpolated critical values f 	nstead of around a linear time from Elliot, Rothenberg, and St	trend tock (1996).		
By default, interpolated critical value	ies from Cheung and Kim (199	5) are given.		

Focus on the 9th row

-1.412 is not more negative than 5% critical value so we do not reject the null hypothesis so there is still unit root. Then we need to check $\Delta\Delta \ln$ _consump for unit root

C	lags]	DF-GLS mu Test Statistic	1% Critica Value	1 50	Critical Value	10% Critical Value
	11	-0.454	-2.604		-1.950	-1.610
	10	-0.496	-2.604		-1.950	-1.610
	9	-0.539	-2,604		-1.950	-1.610
	8	-0.661	-2.604		-1.950	-1.610
	7	-0.597	-2.604		-1.950	-1.610
	e	-0.660	-2.604		-1.950	-1.610
	5	-0.797	-2.604		-1.950	-1.610
	4	-0.977	-2.604		-1.950	-1.610
	3	-1.449	-2.604		-1.950	-1.610
	2	-2.101	-2.604		-1.950	-1.610
	1	-4.524	-2.604		-1.950	-1.610
Opt	Lag (N	(g-Perron seq t) =	9 with RMSE	.0104703		
ſin	SC =	-8.610335 at lag	6 with RMSE	.0111017		
lin	MAIC =	-8.859013 at lag	9 with RMSE	.0104703		

-0.539 is not more negative than 5% critical value so we do not reject the null hypothesis so there is still unit root. Then we need to check $\Delta\Delta\Delta$ In_consump for unit root. But we do not do that, theoretically not accepted

KPSS

kpss d.ln_consump, qs auto

KPSS test for D.ln_consump Automatic bandwidth selection (maxlag) = 3 Autocovariances weighted by Quadratic Spectral kernel Critical values for H0: D.ln_consump is trend stationary 10%: 0.119 5% : 0.146 2.5%: 0.176 1% : 0.216 Lag order Test statistic ____3 _____.202

Test statistics is far from the 5% critical value, reject the null hypothesis The null hypothesis was there is no unit root, so there is unit root

we need to check $\Delta\Delta\Delta \ln$ _consump for unit root

kpss d2.ln_consump, qs auto KPSS test for D2.ln_consump Automatic bandwidth selection (maxlag) = 3 Autocovariances weighted by Quadratic Spectral kernel Critical values for H0: D2.ln_consump is trend stationary 10%: 0.119 5% : 0.146 2.5%: 0.176 1% : 0.216 Lag order Test statistic .067 3 des not fall beyond the 5%. onthal value [0,146]. So we do not Reject the null potesis that there is no up it not Lag order .067 3

<mark>8 ARALIK DERSİ</mark>

If we multiple X by 8 and add 20, it will be the green line

If we are convinced that u(t) is really a random term, we can say that this relationship is acceptable.

If u(t) is random, something like below is accepted

This is typical I(0) variable plot. I(0) means a variable without unit root.

So test if u(t) has the I(0) pattern, we can use u(t) hat series since u(t) will always be unknown.

Summarizing:

 You need to find I(1) series. (If you need to take 1 difference of a Y(t) series to remove its unit root then this series is I(1) series)
 Say X(t) and Y(t) (generally check the economic theory to decide them). You regress Y(t) (the variable that the economic theory says that it is dependent) on X(t) variable by usual OLS. You save the residuals of this regression

= B> + Bix+ + Uf

The residual will be u(t) hat

Then you test if the u(t) hat has a unit root by using ADF test. If you conclude that u(t) hat doesn't have a unit root which implies that u(t) hat is a I(0) series.

You say that there is a long run equilibrium relationship between X(t) and Y(t), and the estimated equation which is below

-= B> EBIXY = UY

is this long run equilibrium relationship (in other words, this is the cointegration equation) and you can use this equation for policy scenarios.

If you get the idea behind this procedure, you get the intuition behind Engle Granger Two Step Cointegration Analysis.

Engle Granger Two Step Cointegration Analysis's first step bu

The second step is checking if an error correction mechanism (going to a new equilibrium after a shock) or not

If this ECM (error correction mechanism) is validated, we trust more on the finding that there is a long run relationship(cointegration)

If ECM is not verified, then do not trust to the finding of first step.

Hoca odtuclass'a iki tane dosya yüklemiş bu derslerin altına, ikisi de aynı Onlardan birini indir, stata'yı aç. File -> dosyayı seç

Cointegration analysis between short and long run interest rate in Euro Area

 Firstly, we need to check if they are integrated of order 1.
 For this purpose, we can use ADFD, PP, KPSS, DF-GLS tests etc. We can also use Zivot Andrews test. This test takes into account one possible break in the data. For simplicity, we use this test. We need to install Zivot Andrews test, to do that write "ssc install zandrews" and run it.

Hoca bu şekilde kullanmayı önerdi, trim önemli değil

Examples

```
zandrews STN, break(both)
```

böyle yazınca hata alıyoruz, time variable'ını define etmemiz lazım, elimizde sadece quarter data olduğu için şu şekilde define ediyoruz →tsset quarter tsset'in anlamı time series set

tekrar commandi yazıyoruz → zandrews STN, break(both) ve çalışıyor

hoca örnek olarak şunu dedi

gen time= _n yazarsak adı time olan 1den başlayan bir variable yaratıyoruz

```
. zandrews STN, break(both)
Zivot-Andrews unit root test for STN
Allowing for break in both intercept and trend
Lag selection via TTest: lags of D.STN included = 1
Minimum t-statistic -5.500 at 1979q2 (obs 38)
Critical values: 1%: -5.57 5%: -5.08 10%: -4.82
```

To reject the null hypothesis, the t-statistic must be more negative then 5% critical value.

In this case, it is more negative, so we reject the null hypothesis. So, STN series doesn't have a unit root.

Here, we carry out the unit root under structural break (Zivot Andrews). The result of this test that STN variable is I(0). Under this conclusion, we cannot continue to do cointegration analysis since the variables in EG cointegration analysis must be I(1)

In fact, we used zandrews, just for an application of a unit root test under structural break.

Let us first check if there is really structural break over its time plot.

Graphics \rightarrow Twoway graph \rightarrow Create \rightarrow Basic plots: Line \rightarrow Y variable = STN, X variable = quarter \rightarrow accept

This is quite obvious there is unit root in this variable because there is upward and downward trends which is stochastic process characteristic and deviations are large which is also result of a unit root. Also there is no point that shows there is a structural break.

Using Zandrews does not seem a good choice here since we do not observe any structural breaks. Hence let us switch to ADF, PP, KPSS and DF-GLS test. But we did the applications of all these test before so to gain time let us only use PP test.

To use PP test, we need to decide which form of RW series we use. Best choice for RW seems to be random walk with drift pattern. (Çünkü plota baktığımızda başladığı yerden uzakta bittiğini, aşağı doğru gittiğini ve doğrusal olmayan bir şey olmadığını görüyoruz.)

Statistics \rightarrow Time Series \rightarrow Tests \rightarrow Phillips Perron Unit Root Test

pperron - Phillips-Perron unit-root test	-		×	
Variable:	Time	settings.		
Suppress constant term in regression Include trend term in regression	>	Pur	e Random Walk	Trand
Display regression table		Kando	m walk with Drift and	Irend
O Default lags (int(4*(N/100)^(2/9)))				
Number of lags				
00 🗈 ОК Са	ancel	Su	bmit	

Biz random walk with drift'i seçtiğimiz için herhangi bir şeye basmıyoruz. Sadece Variable olan STN'i seçiyoruz. → Submit

hillips-Per	rron test for uni	t root	Number of ob Newey-West 1	s = ags =	191
		Inte	erpolated Dickey-F	uller ·	
	Test	1% Critical	5% Critical	10%	Critical
	Statistic	Value	Value		Value
Z(rho)	-3.098	-20.103	-13.882		-11 121
Z(t)	-1.062	-3.480	(-2.884)		-2.574

-1.062 is not more negative than -2.884 so we do not reject the null hypothesis. There is unit root.

To decide the order of integration of STN, we need to take its first difference and test it

Graphics \rightarrow Twoway graph \rightarrow Edit \rightarrow as Y variable write d.STN

There is no clear trend behavior so to test for Δ STN, pure random walk seems better.

Statistics \rightarrow Time Series \rightarrow Tests \rightarrow Phillips Perron Unit Root Test \rightarrow variable d.STN and click suppress constant term in regression

Phillips-Perr	on test for un:	lt root	Number of obs Newey-West lag		190 4
		Int	erpolated Dickey-F	uller ·	
	Test	1% Critical	5% Critical	105	Critical
s	Statistic	Value	Value		Value
Z(rho)	-100.160	-13.480	-7.960		-5.660
Z(t)	-8.245	-2.588	-1.950		-1.616

-8.245 is more negative than -1.950 so we reject the null hypothesis. There is no unit root. STN is I(1) variable

If a series doesn't have a unit root, we call it I(0) series STN is I(1) series Δ STN is I(0)

Let us check if LTN is I(1) as well

Graphics \rightarrow Twoway graph \rightarrow Edit \rightarrow as Y variable write LTN

Best choice for RW seems to be random walk with drift pattern again.

Statistics \rightarrow Time Series \rightarrow Tests \rightarrow Phillips Perron Unit Root Test \rightarrow variable LTN and don't click anything for random walk types \rightarrow submit

Phillips-Pe	rron test for unit	root	Number of ob Newey-West 1	s = ags =	191
		Inte	rpolated Dickey-F	uller	
	Test	1% Critical	5% Critical	10%	Critical
	Statistic	Value	Value		Value
Z(rho)	-0.610	-20.103	-13.882		-11.121
Z(t)	-0.292	-3.480	-2.884		-2.574

MacKinnon approximate p-value for Z(t) = 0.9266

-0.292 is not more negative than -2.884 so we do not reject the null hypothesis so there is unit root

Graphics \rightarrow Twoway graph \rightarrow Edit \rightarrow as Y variable write d.LTN

There is no clear trend behavior so to test for Δ STN, pure random walk seems better.

Statistics \rightarrow Time Series \rightarrow Tests \rightarrow Phillips Perron Unit Root Test \rightarrow variable d.LTN and click suppress constant term in regression

test for unit	root	Number of obs Newey-West lag	5 =	190
	Inte	erpolated Dickey-Ful	ler	
Test	1% Critical	5% Critical	10%	Critical
Statistic	Value	Value		Value
-91.936	-13.480	-7.960		-5.660
-7.842	-2.588	-1.950		-1.616
	Test Statistic -91.936 -7.842	Test 1% Critical Statistic Value -91.936 -13.480 -7.842 -2.588	test for unit root Number of obs Newey-West lag Interpolated Dickey-Ful Test 1% Critical 5% Critical Statistic Value Value -91.936 -13.480 -7.960 -7.842 -2.588 -1.950	test for unit root Number of obs = Newey-West lags = Interpolated Dickey-Fuller Test 1% Critical 5% Critical 10% Statistic Value Value -91.936 -13.480 -7.960 -7.842 -2.588 -1.950

-7.842 is more negative than -1.950 so we reject the null hypothesis so there is no unit root

 Δ LTN doesn't have a unit root. LTN I(1) variable

Now we validated that both variables are I(1) variables. Now regress LTN on STN (bc theory generally says this direction) and save the residuals.

Command: regress LTN STN

to save the residuals we write

predict uhat, resid (after predict you can name anything you want)

before testing for unit root you need to look at its form but since this is OLS residual, always you can use pure random walk

Statistics \rightarrow Time Series \rightarrow Tests \rightarrow Augmented Dickey Fuller Unit Root Test

For variable choose uhat and click suppress constant term in regression

Dickey-Fuller	test for unit	root	Number of obs	= 191
		Inte	rpolated Dickey-Ful	1er
	Test	1% Critical	5% Critical	10% Critical
	Statistic	Value	Value	Value
Z(t)	-3.473	-2.588	-1.950	-1.616
			5	

-3.473 is more negative than -1.950 so we reject the null hypothesis so there is no unit root

So we have two I(1) series, we regress one on the other one. We estimated and got the residuals. Residuals that obtained from the estimation is I(0). So there is a cointegration. However, this values are not correct. We need to look MacKinnon table.

1
1
1
the best
-

-3.473 is more negative than -3.39 so we reject the null hypothesis so there is no unit root

We conclude that there is cointegration between STN and LTN and we estimated regression was the cointegration equation.

There is an easier way to do these = egranger ado file

We need to install it, command = ssc install egranger

egranger dependent variable independent variable = egranger LTN STN

Engle-Granger test for cointegration		N (1st step N (test)) =	192 191	
	Test Statistic	1% Critical Value	5% Critical Value	10%	Critical Value
Z(t)	-3.473	-3.954	-3.368		-3.067

Critical values from MacKinnon (1990, 2010)

regress LTN STN

Source	SS	df	MS		Number of obs	= 192
					F(1, 190)	= 2711.36
Model	2227.30521	1 2	227.30521		Prob > F	= 0.0000
Residual	156.079851	190	.8214729		R-squared	= 0.9345
					Adj R-squared	= 0.9342
Total	2383.38506	191 1	2.4784558		Root MSE	= .90635
LTN	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
STN	.8152444	.015656	5 52.07	0.000	7843616	.8461273
_cons	2.202493	.116978	6 18.83	0.000	1.971749	2.433236

LTN = 2.2 + 0.81 * STN

<mark>15 ARALIK</mark>

COINTEGRATION TEST UNDER STRUCTURAL BREAK

GREGORY HANSEN COINTEGRATION TEST

Recall that we have seen unit root testing under structural break in the last lecture: Zivot-Andrews

ssc install zandrews

webuse lutkepohl2 for data

to test if ln_consump has unit root, we write \rightarrow zandrews ln_consump

```
. zandrews ln_consump
Zivot-Andrews unit root test for ln_consump
Allowing for break in intercept
Lag selection via TTest: lags of D.ln_consump included = 3
Minimum t-statistic -2.245 at 1970q3 (obs 43)
Critical values: 1%: -5.34 5%: -4.80 10%: -4.58
```

Since -2.245 is not more negative than -4.8, we do not reject the null hypothesis. There is unit root in $ln_consump$. This implies that $ln_consump$ is not I(0).

To decide level of integration, we need to take the first difference and test if taking the first difference remove the unit root.

zandrews d.ln_consump

. zandrews d.ln_consump Zivot-Andrews unit root test for D.ln_consump Allowing for break in intercept Lag selection via TTest: lags of D.D.ln_consump included = 2 Minimum t-statistic -5.220 at 1968q2 (obs 34) Critical values: 1%: -5.34 5%: -4.80 10%: -4.58

Since -5.220 is more negative than -4.8, we reject the null hypothesis. There is no unit root in $ln_{consump}$. This implies that $ln_{consump}$ is I(1).

Now, we will see cointegration test under structural break. (Only 1 break is allowed (this is the weakest point of this procedure))

To install Gregory Hansen \rightarrow ssc install ghansen

To see the syntax of the command, type help ghansen

This test allows us to choose the form of the structural break. To understand it, consider the following general form:

Cointegration equation form, model without any break

After structural break, the comprehensive version (after a point, $\beta 0$, $\beta 1$, $\beta 2$ changed) can be as follows

Suppose there is a structural break at t=2015 and your data runs from 1990 till 2020

Command: ghansen ln_consump ln_income, break(regimetrend) lagmethod(aic)

. ghansen	ln_consump	ln_inc, break(r	egimetre	nd) lagmethod	(aic)	
Gregory-Ha Model: Cha Lags = (ansen Test fo ange in Regin D chosen by	or Cointegratio me and Trend Akaike criteri	on with R	egime Shifts Number Maximu	of obs = m Lags =	92
	Test Statistic	Breakpoint	Date	Asympto 18	tic Critica 5%	l Values 10%
ADF	-7.52	64	1975q4	-6.02	-5.50	-5.24
Zt	-7.57	63	1975q3	-6.02	-5.50	-5.24
Za	-70.10	63	1975q3	-69.37	-58.58	-53.31
			_			

Za is asymptotic test in order to use that observations must be higher than or near to 90-100. Otherwise, use Zt.

-70.10 is more negative than -58.58 so we reject the null hypothesis. Since this is a cointegration test, the null hypothesis "there is no cointegration". Thus, there is cointegration between ln_consump and ln_income.

In the above, we said there is cointegration now it is time to estimate cointegration regression:

First, we need to create the dummy variable

command:

gen trend=_n (a trend variable will be added and it would start from 1)

	1C		1							_	
	inv	inc	consump	qtr	1n_inv	dln_inv	ln_inc	dln_inc	1n_consump	d1n_consump	trend
1	180	451	415	1960q1	5.192957		6.111467		6.028278		1
z	179	465	421	1960q2	5.187386	0055709	6.142037	.03057	6.042633	.0143547	2
3	185	485	434	1960q3	5.220356	.03297	6.184149	.0421114	6.073044	.0304112	3
4	192	493	448	1960q4	5.257495	.0371394	6.200509	.0163603	6.104793	.0317488	4
5	211	509	459	1961q1	5.351858	.0943627	6.232448	.031939	6.12905	.0242572	5
6	202	520	45.8	1961q2	5.308268	0435905	6.253829	.0213809	6.126869	0021811	6
7	207	521	479	1961q3	5.332719	.0244513	6.25575	.0019212	6.1717	.0448313	7
8	214	540	487	1961q4	5.365976	.033257	6.291569	.0358191	6.188264	.0165634	8
9	231	548	497	1962q1	5.442418	.0764418	6.306275	.0147061	6.20859	.0203261	9
10	229	558	510	1962q2	5.433722	0086956	6.324359	.0180836	6.234411	.0258207	10
11	234	574	519	1962q3	5.455321	.0215993	6.352629	.0282702	6.246107	.0116959	11
12	237	583	525	1962q4	5.46806	.0127387	6.368187	.0155578	6.263398	.0172915	12
13	206	591	529	1963q1	5.327876	1401839	6.381816	.013629	6.270988	.0075903	13
14	250	599	538	1963q2	5.521461	.1935849	6.395262	.0134459	6.287858	.01687	14
15	259	610	546	1963q3	5.556828	.035367	6.413459	.0181971	6.302619	.0147605	15
16	263	627	\$55	1963q4	5.572154	.015326	6.440947	.0274878	6.318968	.0163493	16
17	264	642	574	1964q1	5.575949	.0037951	6.464588	.0236416	6.352629	.0336609	17
18	280	653	574	1964q2	5.634789	.0588403	6.481577	.0169888	6.352629	0	18
19	282	660	586	1964q3	5.641907	.0071177	6.49224	.010663	6.37332	,0206904	19
20	292	694	602	1964q4	5.676754	.0348468	6.542472	.0502319	6.400258	.026938	20
21	286	709	617	1965q1	5.655992	020762	6.563856	.0213838	6.424869	.0246115	21
22	302	734	639	1965q2	5.710427	.0544348	6.598509	.0346532	6.459905	.0350356	22
23	304	751	653	1965q3	5.717028	.0066009	6.621406	.0228968	6.481577	.0216722	23
24	307	763	668	1965q4	5.726848	.00982	6.637258	.0158525	6.504288	.0227113	24
25	317	766	679	1966q1	5.758902	.0320539	6.641182	.0039239	6.520621	.0163331	25
26	314	779	686	1966q2	5.749393	0095086	6.658011	.016829	6.530878	.0102563	26
27	306	808	697	1966q3	5.723585	0258079	6.694562	.036551	6.546785	.0159078	27
28	304	785	688	1966q4	5.717028	0065575	6.665684	0288782	6.533789	0129967	28
29	292	794	704	1967q1	5.676754	0402737	6.677083	.0113997	6.556778	.0229897	29
30	275	799	699	1967q2	5.616771	0599828	6.683361	.0062776	6.549651	0071278	30
31	273	799	709	1967q3	5.609472	-,0072994	6.683361	0	6.563856	.014205	31
32	301	812	715	1967q4	5.70711	.0976386	6.699501	.0161395	6.572282	,0084267	32
33	280	837	724	196801	5.634789	0723209	6.729824	.0303235	6.584791	.0125089	33

In qtr variable, 1975q3 corresponds to 63 for trend variable.

60	519	1642	1371	1974q4	6.251904	0114942	7.40367	.0178194	7.223296	.0117388	60
61	526	1690	1402	1975q1	6,265301	.0133972	7.432484	.0288134	7.245655	.0223594	61
62	510	1759	1452	1975q2	6.234411	0308905	7.472501	.0400171	7.280697	.0350423	62
63	519	1756	1485	1975q3	6.251904	.0174932	7.470794	0017071	7.30317	.0224729	63
64	538	1780	1516	1975q4	6.287858	.0359545	7.484369	.0135751	7.323831	.0206604	64
65	549	1807	1549	1976q1	6.308098	.0202398	7.499424	.0150547	7.345365	.0215344	65
66	570	1831	1567	197602	6.345636	.0375381	7.512618	.0131941	7.356918	.0115533	66

We will create a dummy variable, it will takes a value of 0 until 63. To do that:

gen D=0

replace D=1 if trend>=63

We generated all the variables that we need to run the cointegration regression. Let us estimate cointegration equation:

regress ln_consump ln_income trend D Dln_income Dtrend

Source	SS	df	MS		Number of obs	= 92	
					F(5, 86)	=55625.82	
Model	25.4538304	5 5.0	9076608		Prob > F	= 0.0000	
Residual	.007870551	86 .00	0091518		R-squared	= 0.9997	
20-21 V		631 62			Adj R-squared	= 0.9997	
	Coof	Ced Fre		Do 1+1	ISER Conf	Tetermili	
n_consump	coer.	500. EII.		5-101	(55% CONT.	Incervarj	
			25 41	0 000	.8540491	.9990311	
ln_inc	.9265401	.0364655	20.41	0.000			
ln_inc trend	.9265401	.0364655	0.27	0.786	0013375	.0017619	
ln_inc trend D	.9265401 .0002122 .1210062	.0364655 .0007796 .7952853	0.27	0.786	0013375 -1.459969	.0017619	
ln_inc trend D Dln_inc	.9265401 .0002122 .1210062 0202861	.0364655 .0007796 .7952853 .1231472	0.27	0.786 0.879 0.870	0013375 -1.459969 2650946	.0017619 1.701981 .2245223	I
ln_inc trend D Dln_inc Dtrend	.9265401 .0002122 .1210062 0202861 .001012	.0364655 .0007796 .7952853 .1231472 .0020019	0.27 0.15 -0.16 0.51	0.786 0.879 0.870 0.614	0013375 -1.459969 2650946 0029677	.0017619 1.701981 .2245223 .0049917	I

Unfortunately, if p value is less than 0.05, it is significant

H0: coefficient is zero

These are all insignificant \rightarrow don't try to interpret them, do not drop them

 ln_ic' in coefficient'ının adı marginal propensity to consume = 0.926 and long run value bc it is cointegration value

If Y has a unit root, most probably lnY also has a unit root. Taking the difference of lnY is corresponding to growth rate of Y in mathematics

"3 OTHER COINTEGRATION ESTIMATION METHODS"

When there is cointegration, instead of estimating cointegration equation by OLS, we can estimate it by 3 other new estimation methods.

- 1) FMOLS (Fully Modified OLS) (Hoca bunu kullanmamızı önerdi)
- 2) DOLS (Dynamic OLS)
- 3) CCR (Canonical Cointegration Regression)

To install them, use the following command:

ssc install cointreg \rightarrow we will return to this

ARIMA MODELLING

If the data has AR(1) form, the best way to forecast it is running this following model:

How we will decide that AR form is good for forecasting:

- We look for AR signature \rightarrow a sudden drop in PACF and a very gradual decline in ACF (If there is sudden drop in ACF and gradually decline in PACF then it is MA)

After deciding that the best form is the AR from, next is determining its level

To decide the level of AR form, we look to the PACF graph, and count the picks To decide the level of MA form, we look to the ACF graph, and count the picks

There is only one pick so level is AR(1)

We also need to determine order of integration

For our example, the series is I(1)

29 ARALIK DERSİ

So we already determined that the ln_consump, ln_inc and ln_inv series are I(1)

If you have I(1) series, you must check if there is cointegration. If there is no cointegration, then by simply using their first differences we can run a VAR mode. If there is cointegration we need to run a cointegration system estimation: this can be VECM(Vector Error Correction Model- this is also known as Johansen Procedure, or FMOLS (Fully Modified OLS), DOLS (Dynamic OLS), CCR(Canonical Cointegration Regression) and at least Engle Granger.

Today we will not enter to the estimation of cointegration. Today we will assume that there is no cointegration and we procedure by taking their differences and estimating a VAR.

Let us first determine the optimal lag length of a VAR system.

Statistics \rightarrow multivariate time series \rightarrow VAR diagnostic and tests \rightarrow Lag order selection statistics (preestimation)

Order of dependent variables are important (en sondaki her şeyin etkilediği olacak)

I(0) hallerini kullanmamız gerektiği için önlerine d koyduk

1.5-2 seneyi kapsaması için maximum lag order'ı 8 yaptık

varsoc - Obtain lag-order selection statist	tics for VARs and VECMs $ imes$ $ imes$	
Main by/if/in		
Dependent variables: dln_inc dln_inv dln_consump Options 8 Maximum lag order Exogenous variables:	Constraints on exogenous variables:	Kullanmak zorunda değiliz ama hoca kullanmanız güzel olur dedi.
Suppress constant term Use Lütkepohl's version of information	criteria 0 💽 Separator every N lines	-
? C 🖿	OK Cancel Submit	

```
Sample: 1962q2 thru 1982q4
```

Number of obs = 83

Lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	673.36	1			1.9e-11	-24.7392	-24.7392*	-24.7392*
1	684.879	23.037	9	0.006	1.8e-11	-24.7999	-24.6945	-24.5376
2	695.689	21.621	9	0.010	1.7e-11*	-24.8435*	-24.6328	-24.3189
3	701.449	11.519	9	0.242	1.9e-11	-24.7654	-24.4493	-23.9786
4	710.962	19.027	9	0.025	1.9e-11	-24.7778	-24.3563	-23.7286
5	712.493	3.0607	9	0.962	2.3e-11	-24.5978	-24.0709	-23.2864
6	718.143	11.3	9	0.256	2.5e-11	-24.5171	-23.8848	-22.9434
7	720.35	4.4136	9	0.882	3.0e-11	-24.3534	-23.6158	-22.5174
8	731.352	22.005*	9	0.009	2.9e-11	-24.4016	-23.5587	-22.3034

```
* optimal lag
```

Endogenous: dln_inc dln_inv dln_consump Exogenous: _cons

AIC için lag order 2 (yıldızlı olanlara bakıyoruz) 0'dan fazla olan laglere bakıyoruz

If your sample size <50, use SBIC

Tabloda en fazla yıldız olan lag hangisi ise onu seç, VAR için lag 0 anlamsız onu seçme

LR aslında daha güçlü, tek başına olsa bile (tek yıldız var) eğer autocorrelation varsa bunu seçeceğiz şimdilik 2 seçiyoruz.

Now er estimate the VAR System

Statistic \rightarrow multivariate time series \rightarrow Basic VAR

Enter the same order for dependent variables

Lag length is asked $\rightarrow 2$

All of them needs to converge to zero.

Hoca kaydı açmayı unutmuş buradan başlıyor.

All the roots(dots) lie within the unit circle so there is no problem with stability of the VAR system

To check autocorrelation

Statistics \rightarrow Multivariate time series \rightarrow VAR diagnostics and tests \rightarrow LM test for residual autocorrelation

If there is autocorrelation we need to increase lag length

Lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	673.36				1.9e-11	-24,7392	-24,7392*	-24,7392
1	684.879	23.037	9	0.006	1.8e-11	-24.7999	-24.6945	-24.5376
2	695.689	21.621	9	0.010	1.7e-11*	-24.8435*	-24.6328	-24.3189
3	701.449	11.519	9	0.242	1.9e-11	-24.7654	-24.4493	-23.9786
4	710.962	19.027	9	0.025	1.9e-11	-24.7778	-24.3563	-23.7286
5	712.493	3.0607	9	0.962	2.3e-11	-24.5978	-24.0709	-23.2864
6	718.143	11.3	9	0.256	2.5e-11	-24.5171	-23.8848	-22.9434
7	720.35	4.4136	9	0.882	3.0e-11	-24.3534	-23.6158	-22.5174
8	731.352	22.005*	9	0.009	2.9e-11	-24.4016	-23.5587	-22.3034

* optimal lag Endogenous: dln_inc dln_inv dln_consump Exogenous: _cons

Now we test normality, but if the IRFs converge to zero, if there is no autocorrelation and if the stability condition is met (as in this example) even if normality test fails it may not be integrated as a big problem

Statistics \rightarrow multivariate time series \rightarrow VAR diagnostics and tests \rightarrow test for normality distributed disturbances

Sadece Jarque-Bera'yı kullan

varnorm - Test for normally	v distributed disturbance	s after var or svar	-	• >
Statistics to report	Skewness	C Ku	Time s	ettings
• Use active var or svar re: • Use alternative results:	sults			
Use Cholesky decompositi	on N lines	2		
C 1		ОК	Cancel	Submit

Jarque-Bera test				
Equation	chi2	df	Prob > chi2	
dln_inc dln_inv dln_consump ALL	10.250 11.669 0.313 22.232	2 2 2 6	0.00595 0.00292 0.85499 0.00110	

The residual of the 1st equation does not have a normal distribution so there is problem

If any of them is less than 0.05, there is a problem.

But don't bother so much

So according to the result of these tests, we do not observe any big problem with the current VAR estimation. Then we can use it for a Granger causality analysis

Statistics \rightarrow multivariate time series \rightarrow VAR diagnostics and tests \rightarrow Granger Causality Test

değiştiğinde ∆ln_inc'ın granger cause'u oluyor

	0.00 < 0.0 null hypot are not zer important	5 so we reject the thesis so c1 and c2 ro so they are		Prob value of the following test H0: $c1=c2=0$ Ha: at least one of them is nonzero
dln_consump dln_consump	dln_inc dln_inv ALL	16.275 4.2446 21.717	2 2 4	0.000 0.120 0.000

tyy

 Δln_inc is the granger cause of $\Delta ln_consump$ Δln_inv is not the granger cause of $\Delta ln_consump$ If Δln_inv and Δln_inc changes together, they are the granger cause of $\Delta ln_consump$

Error Correction Model

In fact, the basis of Error Correction Model is in Nerlove's Partial Adjustment Model (PAM)

If there is a long run relationship between say X and Y, then the following equation expected to work to restore the distorted equilibrium.

PAM in its simplest form

$$\Delta Y_{k} = \beta_{1} \Delta X_{k} + \lambda \left(Y_{k-1} - Y^{*} \right)$$

D4=-5

Her şeyi aynı anda değiştirirsek ne neden oldu anlayamayacağımız için x'I sabit kabul ediyoruz. $\Delta X=0$ bu yüzden

 Δ Y'nin -5 olması için λ =-1'e eşit olması lazım. Λ =-1'e eşitse system goes back to equilibrium in one period.

What would happen if λ =-0.2?

 ΔY =-0.2*(15-10) = -1 This means that in next period Y will decrease by 1 unit so it will be 14.

 ΔY =-0.2*(14-10) = -0.8 So in the second period, Y will decline by 0.8 so now value will be 13.2 so it will never completely return to its equilibrium value. (But you can calculate the time say %99 of the deviation from equilibrium)

So λ is very important for the speed of adjustment, $\lambda = -1 \rightarrow$ The deviation from equilibrium is restored completely in 1st period (100% of the deviation from equilibrium is restored in only 1 period.)

 $\lambda = -0.2 \rightarrow 20\%$ of the deviation from equilibrium is restored in every period.

Conclusion: If there is a stable equilibrium relationship (cointegration) the λ in this regression cannot take a positive value.

For a healthy stable equilibrium relationship, we need that λ lies between -1 and 0.

 $-1 < \lambda < 0 \rightarrow$ range of λ for a healthy estimate of LR relationship

After 1980s with the invention of cointegration analysis the expression within the parenthesis

is proved to be written as the residual of the cointegration equation t time t-1

Dy=BiDx++Auti JIn form, the nome st equation be uned Error Lorrection has

This equation can be easily estimated, and we can check if λ lies between -1 and 0.

For cointegration, all variables must be I(1) so $\Delta Y \sim I(0)$, $\Delta X \sim I(0)$

In Engle-Granger test, we tested if the residuals are I(0). So if there is cointegration

if there is configration up I(2) which implies that up - NJ(2)

So in the existence of cointegration, this ECM can be estimated by OLS since all the terms are I(0). We will estimate it and we will test if λ is negative or not.

ECM Steps

1)Estimate ECM:

54= \$. 5×++ du+-1 2)

Ha: 20]

Carry out a t-test to check it. If you confirm that $\lambda < 0$, then you say that Error Correction Mechanism is working \rightarrow This implies that the LR relationship is working. In addition, the estimated value of λ , gives us the speed of adjustment.

Regress ln_consump ln_inc

ln_inc _cons	.967773 .0856322	.0029521 .020934	327.82 4.09	0.000	.96190 .04404	81 31	.9736379
ln_consump	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
Total	25.4617009	91	.27979891	1 Root	MSE	=	.01539
Residual	.021305495	90	.00023672	28 R-sqi — Admil	uared R-squared	=	0.9992
Model	25.4403954	1	25.440395	4 Prob	> F	=	0.0000
				- F(1,	90)	>	99999.00
Source	SS	df	MS	Numb	er of obs	=	92

We need to save the residuals of this regression

predict ourresidual, resid

regress d.ln_consump d.ln_inc L.ourresidual, noconstant

$L \rightarrow$ bir gecikmesini al demek

ourresidual L1.	2892177	.067872	-4.26	0.000424077	9154357
ln_inc D1.	.8198017	.0453523	18.08	0.000 .729687	6 .909915
D.ln_consump	Coefficient	Std. err.	t	P> t [95% co	nf. interval
Total	.042558703	91	.000467678	Root MSE	= .0098
Residual	.008653454	89	.00009723	R-squared	= 0.796 = 0.792
Model	.033905249	2	.016952625	Prob > F	= 0.000
Source	SS	df	MS	Number of obs	= 9

It must be less than 0.05 Null hypothesis: Lambda hat = 0

VECTOR ERROR CORRECTION MODEL (VECM)

This is also known as Johansen Procedure (Cointegration Analysis). This is very similar to the VAR modeling.

Refreshment: A VAR(2) system for 3 variables

$$\begin{array}{c} A^{(1)}_{(1,1)}(x_{1} = a_{0} + a_{1}x_{1-1} + a_{2}x_{1-1} + a_{3}t_{1-1} + a_{1}y_{1-2} + a_{3}z_{1-1} + a_{1}t_{1-2}$$

If all of them are not I(0), i.e. if all of them I(1), thus there we can carry out a cointegration analysis in multivariate level.

If there is cointegration between variables of the system (here X, Y and Z), then the following form can be estimated. You take the difference of all equations. Then it will be VAR(1).

But there can be more than one cointegration relationship in a multi equation system. In other words, apart from Coint 1 equation, there can be another cointegration equation such as

In this case, two different error correction mechanism expected to run.

Two LR relationship (Two cointegration relation) \rightarrow implies \rightarrow Two Error Correction Mechanism to work

How can we add this addition cointegration relationship (Coint 2) into the multiequation system?

Let's say Y is inflation, X is current account deficit and Z is exchange rate.

Coint 1

This long run relationship says that the inflation is a function of CAD and exchange rate in the long run.

Coint 2

This LR relationship says that there is also another LR relationship for this country in this form: CAD is a function of exchange rate in the long run.

It is possible \rightarrow Theoretically it is!!

It is main advantage and its main complicity of a VECM estimation.

For simplicity, we continue with only 1 cointegration relationship. Now let us determine the expected signs of the λx and λz .

Suppose that Coint 1 relationship is as follows

$$Y_{+} = 10.1 + 0.1 X_{+} - 2.12 + 10.1 X_{+}$$

X has a positive and Z has a negative impact on Y in the long run. How can we determine the signs of λx and λz ?

In the long run, we can write this equation without error term

We put everything on the left-hand side and make equal to the zero.

$$Y_{4} = 10.1 = 0.1 X_{4} + 2.1 Z_{4} = 0$$

If Yt increases, left hand size will be positive, so in order to go to the equality Y should decrease delta Y should be negative and $\lambda Y < 0$

If Yt increases, we need to increase the Xt to make it equal to 0. (Nötrlüğü korumaya çalışıyoruz. Delta Xt >0, λx >0

If Yt increases, we need to decrease the Zt to make it equal to 0. (Nötrlüğü korumaya çalışıyoruz. Delta Zt <0, λ z<0

Üçünün (λy , λx , λz) birden çalışmasına gerek yok, biri çalışırsa eşitliği sağlayabilir.

$$\begin{split} & \Delta X_{F} = d_{0+1} \Delta X_{L-1} + d_{2} \Delta Y_{L-1} + d_{3} \Delta Z_{L-1} + \lambda_{X} u_{L-1} + \varepsilon_{12} \\ & \Delta Y_{L} = e_{0} + e_{1} \Delta X_{L-1} + e_{2} \Delta Y_{L-1} + e_{3} \Delta Z_{L-1} + \lambda_{Y} u_{L-1} + \varepsilon_{12} \\ & \Delta Z_{L} = \int_{0}^{0} + \int_{1}^{1} \Delta X_{L-1} + \int_{1}^{0} \Delta Y_{L-1} + \int_{3} \Delta Z_{L-1} + \lambda_{Z} u_{L-1} + \varepsilon_{13} \\ & \Delta Z_{L} = \int_{0}^{0} + \int_{1}^{1} \Delta X_{L-1} + \int_{1}^{0} \Delta Y_{L-1} + \int_{1}^{0} \Delta Z_{L-1} + \delta Z_{L} \\ & \Delta Z_{L} = \int_{0}^{0} + \int_{1}^{1} \Delta X_{L-1} + \int_{1}^{0} \Delta Y_{L-1} + \int_{1}^{0} \Delta Z_{L-1} + \int_{2}^{0} u_{L-1} + \varepsilon_{13} \\ & \Delta Z_{L} = \int_{0}^{0} + \int_{1}^{0} \Delta X_{L-1} + \int_{1}^{0} \Delta Y_{L-1} + \int_{1}^{0} \Delta Z_{L-1} +$$

Stata Application

Steps of VECM analysis

1)All the variables must be I(1) [This must be checked]

2)You determine the optimal lag length of VECM system

3)Carry out the Johansen cointegration test and determine of number of cointegration relationships

Since this algorithm allows us to work with more than 1 cointegration, we must check what is the number of cointegration relationship. This is reported with the name of "rank". If rank is zero, there is no cointegration. If rank is 1, there is one cointegration.

To determine the rank of the VECM system, two tests are proposed by Johansen

1)Trace TestMore powerful2)Max Eigenvalue Test

4)Estimate the VECM system and check if at least one of the error correction terms is in the expected range

And statistically significant (its t value is larger than 2 in absolute value or the prob values of the reported lambda terms must be less than 0.05 to be significant)

If at least one of the lambda terms is within the expected range and significant, be happy

You can use this model for economic analysis and even for forecasting.

Count outcomes Fractional outcomes Generalized linear models Choice models Time series))))))))	n 2023 sv 2022 (what's new) ag 2021 (what's new) (or type -update all-)		
Multivariate time series	•	Setup and utilities	Þ	
Spatial autoregressive models		Vector autoregression (VAR)		_econ483_Applied Econometrics I\log_january5th.smcl
Longitudinal/panel data		Basic VAR		
Multilevel mixed-effects models	•	Structural vector autoregression (SVAR)		_econ483_Applied Econometrics I\log_january5th.smcl
Survival analysis	Þ	Vector error-correction model (VECM)		
Epidemiology and related	•	Cointegrating rank of a VECM		
Endogenous covariates		Dynamic-factor models		
Sample-selection models	F	Multivariate GARCH		
Treatment effects	¥	State-space models		
SEM (structural equation modeling)	F.	Dynamic stochastic general equilibrium (DSGE) models	۲	
LCA (latent class analysis)		VAR diagnostics and tests	•	log on (smcl)
FMM (finite mixture models)	×	VEC diagnostics and tests	•	Lag-order selection statistics (preestimation)
IRT (item response theory)		VEC/VAR forecasts	•	Lag-order selection statistics (postestimation)
Multivariate analysis	F	IRF and FEVD analysis		LM test for residual autocorrelation
Survey data analysis	F .	Forecasting		Test for normally distributed disturbances
Lasso	F	Bayesian models	F	Check stability condition of VEC estimates

Webuse lutkepoh12

Dependent variable \rightarrow ln_inc ln_inv ln_consump

(en güçlü olan en sona yazılacak)

Maximum lag order $\rightarrow 8$

Do not suppress constant term

Sample: 1962q1 thru 1982q4

Number of obs = 84

Lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	271.005				3.4e-07	-6.38107	-6.34617	-6.29425
1	700.918	859.83	9	0.000	1.5e-11	-16.4028	-16.2632*	-16.0556*
2	710.705	19.574	9	0.021	1.5e-11	-16.4215	-16.1773	-15.8138
3	720.79	20.17	9	0.017	1.4e-11*	-16.4474*	-16.6984	-15.5792
4	727.16	12.74	9	0.175	1.5e-11	-16.3848	-15.9311	-15.2562
5	733.503	12.686	9	0.177	1.7e-11	-16.3215	-15.7631	-14.9325
6	736.176	5.3449	9	0.803	2.0e-11	-16.1708	-15.5078	-14.5214
7	745.707	19.063*	9	0.025	2.0e-11	-16.1835	-15.4157	-14.2736
8	749.601	7.7872	9	0.556	2.2e-11	-16.0619	-15.1895	-13.8916

* optimal lag Endogenous: ln_inc ln_inv ln_consump Exogenous: _cons

If you have small sample size, use SBIC If your sample size is large enough, choose AIC

For the system, optimal lag length is 3. Now let us determine the rank (number of cointegration relationship)

printo							
•••• •	Summaries, tables, and tests	*					
T 🖡	Linear models and related Binary outcomes Ordinal outcomes	} } np, }	maxlag(8)				
ers\ozane\	Categorical outcomes	F			Number	of ohe of	
112	Count outcomes	+			Number	OT ODS = 84	
rmine the	Fractional outcomes	× 1	p FPE	AIC	HQIC	SBIC	
inv In_cons	Generalized linear models	+	3.4e-07	-6.38107	-6.34617	-6.29425	
ermine the	Choice models	. 0.	000 1.5e-11	-16.4028	-16.2632*	-16.0556*	
	Time series		017 1.4e-11*	-16.4474*	-16.0984	-15.5792	
	Multivariate time series	+	Setup and uti	ilities			
	Spatial autoregressive models		Vector autore	egression (VAR	0		
	Longitudinal/panel data		Basic VAR				
	Multilevel mixed-effects models	•	Structural vec	tor autoregre	ssion (SVAR)		
	Survival analysis	•	Vector error-	correction mo	del (VECM)		
	Epidemiology and related	¥ .	Cointegrating	rank of a VEC	CM		
	Endogenous covariates	+	Dynamic-fact	tor models			
	Sample-selection models		Multivariate (GARCH			
	Treatment effects		State-space r	nodels			
	SEM (structural equation modeling)		Dynamic stoc	hastic general	l equilibrium ((DSGE) models	
	LCA (latent class analysis)	•	VAR diagnost	tics and tests			
	FMM (finite mixture models)		VEC diagnost	tics and tests			
	IRT (item response theory)		VEC/VAR fore	ecasts			
	Multivariate analysis		IRF and FEVD	analysis			
	Survey data analysis	*	Forecasting				
	Lasso Meta-analysis	•	Bayesian moi	dels			۲
Drive\Belgeler	warapre impatation						

Dependent variable \rightarrow ln_inc ln_inv ln_consump

Lag sayısını yazarken burada VAR için soruyor o yüzden her zaman 1 fazlasını yazacağız çünkü VECM bir lag eksik yazıyor. Optimal lag length 3tü bir fazlasını yazdığımız için 4 yazdık.

Johansen	tests fo	or cointegrat	ion		
Trend: C	onstant			Number of	obs = 88
Sample:	1961q1 th	nru 1982q4		Number of	lags = 4
					Critical
Maximum				Trace	value
rank	Params	LL	Eigenvalue	statistic	5%
0	30	737.55584		33.2489	29.68
1	35	748.66973	0.22321	11.0211*	15.41
2	38	753.23176	0.09849	1.8970	3.76
3	39	754.18028	0.02133		

* selected rank

0 rank = there is no cointegration

Null hypothesis: There is no cointegration

Trace statistics > critical value \rightarrow reject the null hypothesis

1 rank= at least 1 cointegration

Trace statistics < critical value

Stop here, there is 1 cointegration

Graphics S	itatistics User Window Help			
14 · 🖻	Summaries, tables, and tests	•		
τ #	Linear models and related	▶ consump		
sere (Binary outcomes	•		
	Ordinal outcomes	Lagnth is 3		
ozane\	Categorical outcomes	<pre>> (muchan of cointermetics unlationships)</pre>		
	Count outcomes	<pre>(number of cointegration relationships))</pre>		
ne the	Fractional outcomes	<pre>sump, trend(constant) lags(4)</pre>		
imal le	Generalized linear models	•		
ine the	Choice models	Number of obs = 88		
/ In_co	Time series	Number of lags = 4		
pintegra	Multivariate time series	Setup and utilities		
VECM s.,	Spatial autoregressive models	Vector autoregranica (VAP)		
	longitudinal/nanel data	Resis VAD		
	Multilevel mixed-effects models	Structural vector autoregression /SV(AR)		
	Sumiyal analysis	Vector error-correction model (VECM)		
	Enidemiology and related	Cointegrating rank of a VECM		
	Epidemiology and related	Dynamic-factor models		
	Endogenous covariates	Multivariate GARCH		
	Sample-selection models			
	Ireatment effects	State-space models		
	SEM (structural equation modeling)	Dynamic stochastic general equilibrium (DSGE) models	•	
	LCA (latent class analysis)	 VAR diagnostics and tests 	>	log on (
	FMM (finite mixture models)	VEC diagnostics and tests	>	
	IRT (item response theory)	VEC/VAR forecasts	•	
	Multivariate analysis	IRF and FEVD analysis		
	Survey data analysis	Forecasting		
	Lasso	Bayesian models	*	
	Meta-analysis			
	Multiple imputation			
e\Belgeler	*			

Dependent variable \rightarrow ln_inc ln_inv ln_consump

(asla fark almıyoruz)

- vec	 Vector error- 	correction	n models			-		×
Model	Adv. model	by/if/in	Reporting	Maximization				
Depen	dent variables	5:				Time s	ettings	
In_in	c In_inv In_con	sump					¥.	
Trend : consta	4 - Maximu specification:	m lag to l	grating equ	in underlying VA	R model			
Cons	traints			_				
	onstraints to p	place on c	ointegrating	vectors:		New constr	raints	
	onstraints to p	place on c	ointegrating	g vectors:	~	New constr	raints	
	onstraints to p onstraints to p	blace on c	ointegrating djustment p	g vectors: parameters:	~	New constr	raints	
	onstraints to p onstraints to p	place on c	ointegrating djustment p	g vectors: parameters:		New constr	raints	

D_ln_inc	11	.011312	0.7777	269.3465	0.0000
D_ln_inv	11	.044728	0.2438	24.83139	0.0096
D_ln_consump	11	.009227	0.8378	397.7097	0.0000

		Coefficient	Std. err.	z	P> z	[95% conf.	interval]
\checkmark	D_ln_inc ce1 L1. ln_inc LD. L2D.	.1077006 1765273 .0022134	.1104255 .167732 .1531669	0.98 -1.05 0.01	0.329 0.293 0.988	1087294 5052761 2979882	.3241306 .1522215 .3024149
Error correction parameter	L3D. ln_inv LD. L2D. L3D.	.1707646 .0576695 .0704422 .0255336	.1409287 .0315866 .0326002 .0323427	1.21 1.83 2.16 0.79	0.226 0.068 0.031 0.430	1054506 0042391 .006547 037857	.4469798 .119578 .1343375 .0889242
	ln_consump LD. L2D. L3D.	.235813 0316929 067531	.1671553 .1675529 .1506836	1.41 -0.19 -0.45	0.158 0.850 0.654	0918053 3600906 3628654	.5634313 .2967048 .2278034

	I					
ln_inc						
LD.	1.018989	.6632	1.54	0.124	2808587	2.318837
L2D.	.6646721	.6056103	1.10	0.272	5223023	1.851647
L3D.	.5460865	.5572216	0.98	0.327	5460478	1.638221
ln_inv						
LD.	328338	.124891	-2.63	0.009	5731198	0835563
L2D.	1973008	.1288988	-1.53	0.126	4499379	.0553363
L3D.	0216915	.1278807	-0.17	0.865	2723331	.2289501
ln_consump						
LD.	.1619585	.6609194	0.25	0.806	-1.13342	1.457337
L2D.	.4291322	.6624918	0.65	0.517	8693278	1.727592
L3D.	0351118	.5957916	-0.06	0.953	-1.202842	1.132618
_cons	.0029673	.0175806	0.17	0.866	03149	.0374246
					, 0,05	
_ce1					<u> </u>	
L1.	.2809805	.0900737	3.12	0.002	.1044392	.4575218
ln inc	-0					
LD.	.0463056	.1368185	0.34	0.735	2218538	.314465
L2D.	.186618	.1249378	1.49	0.135	0582555	.4314915
L3D.	.1087082	.1149551	0.95	0.344	1165997	.3340161
ln_inv						

	Johansen n	normalizatio	n restric	ction imp	osed				
beta	Coefficient	Std. err.	z	P> z	[95% conf.	interval]			
ln_inc ln_inv ln_consump _cons	1 0035932 -1.03087 .1349589	033586 .0300374	-0.11 -34.32	0.915 0.000	0694205 -1.089742	.062234 9719977			
	<u> </u>	1749	5	0.775	Linu	1.01	A sansary - a	,	
$\mathcal{O}\mathcal{O} = \mathcal{O}$	~c+ + 0.		_ 0.1	0035	LAINV -	. [.03			
	-								
	- (n-i)	~c+ -	+ 9.1 <u>7</u>	349	0. o	0356	LINV - 1.	٥٦١٨٥٥	nsng -0
	[n-1]	uct -	, 0. IŢ	\$ 49 _ 0	_ 0.0 . 1349	-+ U.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	مز <i>ب</i> اره ۲ م.	nsny -0
الليسا وك	[n-1]	vct -	+ 0.17 =	549 _ 0	_ 0.0 .1349	+ 9 .		vy t ostreo	c- mer

Here we did the opposite form but it is not important, in fact, this form reveals that a positive LR relationship between

1	()-)	as t	expect	-
D_1n_consump	TV	ne /				
L1.	. 2809805	.0900737	3.12	0.002	.1044392	.4575218
ln_inc	S'S'					
LD.	.0463056	.1368185	0.34	0.735	2218538	.314465
L2D.	.186618	.1249378	1.49	0.135	0582555	.4314915
L3D.	.1087082	.1149551	0.95	0.344	1165997	.3340163
ln_inv	*					
LD.	.0296532	.0257651	1.15	0.250	0208454	.0801518
L2D.	.0713132	.0265919	2.68	0.007	.0191941	.1234324
L3D.	.0429671	.0263819	1.63	0.103	0087404	.0946740
ln_consump						
LD.	2796758	.136348	-2.05	0.040	5469131	0124386
L2D.	1222972	.1366724	-0.89	0.371	3901703	.1455758
L3D.	.038841	.1229121	0.32	0.752	2020624	.2797444
_cons	.0041841	.0036269	1.15	0.249	0029245	.0112927

You found that there is error correction mechanism working to restore the LR relationship

So this estimation is not bad, it can be used for economic analysis

To graph ACF and PACF statada "ac variablename" ve "pac variablename" şeklinde komut girince çiziyordu ACF ve PACF grafiklerini