Johansen Procedure (VECM Estimation)

VAR Models (Vector Autoregressive Models)

A VAR(2) model for 3 variables (X, Y, Z) is written as follows

$$X_{+} = a_{0} + a_{1} X_{k-1} + a_{2} X_{k-2} + a_{3} Y_{k-1} + a_{4} Y_{k-2} + a_{5} - \tilde{z}_{k-1} + a_{6} \tilde{z}_{k-2} + U_{41}$$

$$Y_{+} = b_{0} + b_{1} X_{k-1} + b_{2} X_{k-2} + d_{5} Y_{k-1} + b_{4} Y_{k-2} + b_{7} \tilde{z}_{k-1} + b_{6} \tilde{z}_{k-2} + u_{42}$$

$$\tilde{z}_{+} = c_{0} + c_{1} X_{k-1} + c_{2} X_{k-2} + c_{3} Y_{k-1} + c_{4} Y_{k-2} + c_{7} \tilde{z}_{k-1} + b_{6} \tilde{z}_{k-2} + u_{42}$$

<u>*Remark*</u>: All the variables entering to the VAR system (X, Y, Z) must be I(0). [There is no unit root]

- If any variable among X, Y and Z has unit root, we cannot use VAR modeling.
- For this purpose, we need to check if the variables have unit root or not: ADF test, PP test, KPSS test, DF-GLS test, Zivot Andrews and Kapetanous Test can be used for this purpose.
- On the other hand, if all the variables have unit root, in other words if all the variables are I(1) then we can check if there is cointegration (existing of long term equilibrium relationship between variables) between these variables. This test is done by Johansen Test of Cointegration. For this purpose, we can use Trace Test (most powerful) and Maximum Eigenvalue Test (less powerful)
- If cointegration is detected, then we can estimate a Vector Error Correction Model (VECM). All these applications can be done in Stata.
- After the estimation of VECM, we will check if any error correction mechanism is working → if it is not, then we conclude that there is no trustable cointegration. In this case, VECM cannot be reported. Instead, we can convert I(1) series into I(0) series by taking their 1st differences (i.e using ΔX, ΔY, ΔZ instead of X, Y and Z) and then with these series (ΔX, ΔY, ΔZ) we can run a VAR system estimation.

VECM form of the VAR(2) system given above

<u>**Remark:**</u> If the VAR system has a m lag as optimum, the corresponding VECM system will have m-1 lags as optimum.

Suppose that there is following cointegration relationship between X, Y and Z

Yt = B -+ B, X++ B2 2++ e+

Error term of cointegration equation

$$V^{\text{ML}^{(V)}} \begin{pmatrix} X_{4} = a_{0} + a_{1} X_{4-i} + a_{2} X_{4-2} + a_{3} Y_{4-i} + a_{4} Y_{4-2} + a_{5} - \tilde{z}_{4-i} + a_{6} \tilde{z}_{4-2} + u_{41} \\ Y_{4} = b_{0} + b_{1} X_{4-1} + b_{2} X_{4-2} + d_{5} Y_{4-i} + b_{4} Y_{4-2} + b_{7} \tilde{z}_{4-1} + b_{6} \tilde{z}_{4-2} + u_{41} \\ \tilde{z}_{4} = c_{0} + c_{1} X_{4-1} + c_{2} X_{4-2} + c_{3} Y_{4-i} + c_{4} Y_{4-2} + c_{7} \tilde{z}_{4-i} + c_{6} \tilde{z}_{4-2} + u_{4j} \end{pmatrix}$$

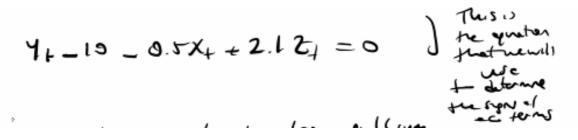
Intercept term is generally dropped, but the addition of the intercept term facilitates a good estimation.

$$\Delta X_{4} = \frac{1}{20} + \frac{1}{2} \Delta X_{4-1} + \frac{1}{2} \Delta Y_{4-1} + \frac{1}{2} \Delta Z_{4-1} + \frac{1$$

Here the signs of the error correction terms are important because they must be in the same with the cointegration. In other words, the coefficients of cointegration equation imposes some conditions on these adjustment coefficients (error correction terms)

<u>Remark</u>: If there is really cointegration at least one of the error correction terms must be significant and must have the expected sign. Otherwise, we cannot talk about or trust any cointegration relationship.

Therefore, the required sign of the coefficients must be understood after the estimation of cointegration equation. How will we do that?


Example: Suppose that the cointegration equation is as follows

How can we obtain the requirements of the error correction coefficients?

We can also write in terms of Y_t :

$$\Upsilon_{t} = \underbrace{(\bullet + 0.5 X_{t-2} \cdot i \theta_{t} + \hat{\theta}_{t}}_{\widehat{\Upsilon}_{t}}$$

In equilibrium situation there will not be any deviation from equilibrium so ϵ will be zero. Hence, for LR equilibrium form we can write as

Suppose that there is a deviation from equilibrium in which $Y_t \, is \, now \, above \, its equilibrium \, value \, Y^*$

To go back to equilibrium, Y_t must decline $\rightarrow \Delta Y_t < 0$

Ec term for ΔY_t equation must be negative.

 Y_t is the dependent variable of the cointegration equation. That is why always its coefficient is 1. Therefore, it is always positive and must go back equilibrium. ΔY_t must be negative. This says that λ_y must be negative.

2ndLecture 17.03.2023

We will carry out a Johansen VECM Analysis in Stata

Before starting Johansen Procedure, we be sure that all the variables entering the Johansen Analysis are I(1), which means that the variables must have unit root. For this purpose we can use the Zivot Andrews Test.

This is a variant of ADF test which is developed to take into the account one possible structural chance in the series.

Steps:

- ssc install zandrews
- zandrews LTN, break(both)

```
. zandrews LTN, break(both)
Zivot-Andrews unit root test for LTN
Allowing for break in both intercept and trend
Lag selection via TTest: lags of D.LTN included = 2
Minimum t-statistic -4.240 at 1983q4 (obs 56)
Critical values: 1%: -5.57 5%: -5.08 10%: -4.82
```

- t-statistic is -4.240 and critical value is -5.08
- t-statistic is not more negative than the 5% critical value, so we do not reject null hypothesis
- Null hypothesis: There is unit root in LTN series
- So, we conclude that there is unit root in LTN.

Now we will check if Δ LTN has unit root. If it does not have unit root, this means that taking the first difference remove the unit root which implies that LTN is I(1).

```
• zandrews D.LTN, break(both)
```

```
. zandrews D.LTN, break(both)
Zivot-Andrews unit root test for D.LTN
Allowing for break in both intercept and trend
Lag selection via TTest: lags of D.D.LTN included = 3
Minimum t-statistic -8.036 at 1981q4 (obs 48)
Critical values: 1% -5.57 5%: -5.08 10%: -4.82
```

- t-statistic is more negative than the 5% critical value. Δ LTN doen not have unit root. We reject the null hypothesis. LTN is I(1).
- zandrews STN, break(both)

```
    zandrews STN, break(both)
    Zivot-Andrews unit root test for STN
    Allowing for break in both intercept and trend
    Lag selection via TTest: lags of D.STN included = 1
    Minimum t-statistic -5.500 at 1979q2 (obs 38)
    Critical values: 1%: -5.57 5%: -5.08 10%: -4.82
```

- t-statistic is more negative than 5% critical value. We reject the null hypothesis.
 STN does not have unit root. STN is I(0). If STN is I(0), we cannot use Johansen VECM procedure. Therefore now we assume that STN is I(1) not I(0). Already, the other test may point out that it is I(1). Also Zivot Andrews test for say 10% is also saying that there is unit root. To be able to continue the application let us assume it is I(1).
- zandrews URX, break(both)

```
. zandrews URX, break(both)
Zivot-Andrews unit root test for URX
Allowing for break in both intercept and trend
Lag selection via TTest: lags of D.URX included = 2
Minimum t-statistic -4.165 at 1997q3 (obs 111)
Critical values: 1%: -5.57 5%: -5.08 10%: -4.82
```

t-statistics are not more negative than critical value, so we do not reject the null hypothesis. So URX has unit root.

• zandrews D.URX, break(both)

t-statistic is more negative than critical value, so URX is I(1)

<u>**Remark:**</u> All the variables entering into the VECM must be I(1)

Now let us determine the optimum lag length of the corresponding VAR system.

Statistics \rightarrow Multivariate time series \rightarrow VAR diagnostics and tests \rightarrow Lag-order selection statistics (preestimation)

lain by/if/in		
Dependent variables:	Time settings	
LTN STN URX		~
Options () Maximum lag order Exogenous variables:	Constraints on exogenous variables:	
Suppress constant term Use Lütkepohl's version of inform		
95 Confidence level	0 Separator every N lines	
	OK Cancel Subn	nit

Lag-order selection criteria

Lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	-334.32				.007851	3.66652	3.68776	3.71893
1	705.266	2079.2	9	0.000	1.1e-07	-7.5355	-7.45052	-7.32583
2	825.768	241	9	0.000	3.2e-08	-8.74748	-8.59876*	-8.38056*
3	839.539	27.542*	9	0.001	3.0e-08*	-8.79934*	-8.58688	-8.27516
4	845.599	12.12	9	0.207	3.1e-08	-8.76738	-8.49119	-8.0859
5	852.66	14.123	9	0.118	3.2e-08	-8.74631	-8.40638	-7.90763
6	856.472	7.6236	9	0.572	3.4e-08	-8.68991	-8.28625	-7.69398
7	862.838	12.732	9	0.175	3.5e-08	-8.66128	-8.19389	-7.5081
8	866.567	7.458	9	0.590	3.7e-08	-8.60399	-8.07286	-7.29356

Endogenous: LTN STN URX Exogenous: _cons

Which one has more stars, choose that one.

• Thus, we select optimal lag length as 3 for the corresponding VAR model.

Statistics \rightarrow Multivariate time series \rightarrow Cointegrating rank of a VECM

If the rank is 0, there is no cointegration. If the rank is 1, there is 1 cointegration...

	vecrank - Estimate the cointegrating rank of a VECN	n – 🗆 🗙
	Model Adv. model by/if/in Reporting	
	Dependent variables: Example LTN STN URX	Time settings
	3 Maximum lag to be included in underlying Trend specification: constant	y VAR model
	? C	Cancel Submit
	. vecrank LTN STN URX, trend(constant) la	gs(3)
0 cointegration	Johansen tests for cointegration Trend: Constant Sample: 1970q4 thru 2017q4	Number of obs = 189 Number of lags = 3
	Maximum rank Params LL Eigenvalue	Critical Trace value statistic 5%
1 cointegration	0 21 842.47964 . 1 26 858.02953 0.15172	44.0253 29.68 12.9255* 15.41
2 cointegration	2 29 863.104 0.05228 3 30 864.49229 0.01458	2.7766 3.76
3 cointegration	* selected rank	

If you find 3 cointegration in a model with 3 variables, it means all of the variables are I(0).

For rank 0: Trace statistic is far beyond critical value so reject the null hypothesis. For rank 1: Trace statistic is less than critical so do not reject the null hypothesis.

Conclusion: There is 1 cointegration relationship

If you find a cointegration, stop there.

Now we can estimate the VECM.

Statistics \rightarrow Multivariate time series \rightarrow Vector error correction model (VECM)

Model Adv. model by/it/in Reporting Maximization Dependent variables: Time settings LTN STN URX Image: mail of the setting equations (rank) 3 Maximum lag to be included in underlying VAR model Trend specification: constraints Constraints to place on cointegrating vectors: New constraints Constraints to place on adjustment parameters:	
LTN STN URX ITN STN URX I Number of cointegrating equations (rank) I Maximum lag to be included in underlying VAR model Trend specification: constraint Constraints Constraints Constraints New constraints	
Number of cointegrating equations (rank) 3 Maximum lag to be included in underlying VAR model Trend specification: constant Constraints Constraints Constraints to place on cointegrating vectors: New constraints	
Maximum lag to be included in underlying VAR model Trend specification: constant Constraints Constraints Constraints to place on cointegrating vectors: New constraints	
Trend specification: constant Constraints Constraints to place on cointegrating vectors: New constraints	
Constraints Constraints to place on cointegrating vectors: New constraints	
Constraints to place on cointegrating vectors: New constraints	
Constraints to place on adjustment parameters:	
? C R Cancel Submit Error term of	
cointegration	
The VECM here is as follows	
The vector here is as follows	
Suppose that the cointegration equation is like:	
Suppose that the contegration equation is like.	
LTNE = B=+BISTNE+BZULX +M	
CINE- P- Provpaper	
This coefficient is expected to be negative between -1	
and 0 and must be significant	
Coefficient Std. err. z P> z [95% conf_interval]	
$<0.95 \rightarrow$ reject H ₀ that this is	
D_LTN Zero (so it is significant)	
_cei p XLIP	
L10572417 .0287044 -1.99 0.04611350120009821	
L10572417 .0287044 -1.99 0.04611350120009821	
L10572417 .0287044 -1.99 0.04611350120009821	
L10572417 .0287044 -1.99 0.04611350120009821 LTN LD5209223 .0797625 6.53 0.000 .3645908 .6772539 L2D2911449 089161 -2.51 0.01235825760449322 Since it is	
L10572417 .0287044 -1.99 0.04611350120009821 LTN LD5209223 .0797625 6.53 0.000 .3645908 .6772539 L2D2011449 .080161 -2.51 0.01235825760440322 Since it is significant, LTN	
L10572417 .0287044 -1.99 0.04611350120009821 LTN LD5209223 .0797625 6.53 0.000 .3645908 .6772539 L2D2011449 .080161 -2.51 0.01235825760440322 Since it is significant, LTN can restore the	
L10572417 .0287044 -1.99 0.04611350120009821 LTN LD5209223 ⁷ .0797625 6.53 0.000 .3645908 .6772539 L2D2011449 .080161 -2.51 0.01235825760440322 STN B3206591 ⁷ 0.0000 .3645908 .6772539 L2D2011449 .080161 -2.51 0.01235825760440322 STN LD	
L10572417 .0287044 -1.99 0.04611350120009821 LTN LD5209223 .0797625 6.53 0.000 .3645908 .6772539 L2D2011449 .080161 -2.51 0.01235825760440322 STN LD0380691 0.0494745 0.77 0.4420588991 .1350374 LD0380691 0.04494745 0.77 0.4420588991 .1350374 L2D0341427 .0514509 0.66 0.5070666992 .1349847	
L10572417 .0287044 -1.99 0.046113501200009821 LTN LD5209223 .0797625 6.53 0.000 .3645908 .6772539 L2D2011449 .080161 -2.51 0.01235825760440322 STN LD0380691 0.0494745 0.77 0.4420588991 .1350374 LD0341427 .0514509 0.66 0.5070666992 .1349847	
L10572417 .0287044 -1.99 0.046113501200009821 LTN LD5209223 .0797625 6.53 0.000 .3645908 .6772539 L2D2011449 .080161 -2.51 0.01235825760440322 STN LD0380691 .0494745 0.77 0.4420588991 .1350374 LD0380691 .0514509 0.66 0.50706666992 .1349847 Significant, LTN can restore the distorted equilibrium URX	
L10572417 .0287044 -1.99 0.04611350120009821 LTN LD5209223 ⁷ .0797625 6.53 0.000 .3645908 .6772539 L2D2011449 .080161 -2.51 0.01235825760440322 STN LD0380691 ⁷ 0.0494745 0.77 0.4420588991 .1350374 LD0341427 .0514509 0.66 0.5070666992 .1349847 URX LD15.23477 ⁷ 21.10725 -0.72 0.470 -56.60423 26.13468	
L10572417 .0287044 -1.99 0.046113501200009821 LTN LD5209223 .0797625 6.53 0.000 .3645908 .6772539 L2D2011449 .080161 -2.51 0.01235825760440322 STN LD0380691 .0494745 0.77 0.4420588991 .1350374 LD0380691 .0514509 0.66 0.50706666992 .1349847 Significant, LTN can restore the distorted equilibrium URX	

VECM is 1 lag less.

VECM Equations:

$$\Delta UTN_{k} = a_{0} + a_{1} \Delta UTN_{k-1} + a_{2} \Delta UTN_{k-2} + a_{3} \Delta STN_{k-1} + a_{4} \Delta STN_{k-2}$$

$$+ a_{5} \Delta UAX_{k-1} + a_{6} \Delta UCX_{k-2} + A_{CTN} \hat{u}_{k-1} + e_{k1}$$

$$Adjustment coefficient of LTN$$

$$\Delta STN = b_{0} + b_{1} \Delta UTN_{k-1} + b_{2} \Delta UTN_{k-2} + b_{3} \Delta STN_{k-1} + b_{4} \Delta STN_{k-1}$$

$$+ b_{5} \Delta MXX_{k-1} + b_{5} \Delta STN_{k-1} + b_{4} \Delta STN_{k-1}$$

$$Adjustment coefficient of STN$$

In the cointegration relationship, which variable is in the left-hand side, the adjustment coefficient of that variable should be negative

Identification: beta is exactly identified

		Johansen n	Johansen normalization restriction imposed							
	beta	Coefficient	Std. err.	z	P> z	[95% conf.	interval]			
_ce1										
	LTN	1								
	STN	8611155	.0437127	-19.70	0.000	9467907	7754402			
	URX	3.459075	5.965053	0.58	0.562	-8.232215	15.15036			
	_cons	-2.117078								

To determine λ_{STN} we need to go and check the cointegration regression.

LTN = -0.86 STN = + 3.45 URX = 2.11=0

Or

If LTN_t is increasing, STN_t must increase because the coefficient is negative (-0.86) to neutralize the equation. That's why λ_{STN} must be positive.

			positive a	termined at nd betweer 5 so it is sig	1 and 0 an		
		/	×				
D_STN							
	_ce1						
	L1.	.1511061	.0466773	3.24	0.001	.0596203	.2425918
	1.711						
	LTN						
	LD.	.4146899	.1297047	3.20	0.001	.1604733	.6689064
	L2D.	3284814	.1303528	-2.52	0.012	5839682	0729946
	STN						
	LD.	.3921514	.0804523	4.87	0.000	.2344678	.5498351
	L2D.	.0325483	.0836663	0.39	0.697	1314345	.1965312
	URX						
	LD.	-37.78027	34,32329	-1.10	0.271	-105.0527	29,49214
	L2D.	-29.37253	34.83584	-0.84	0.399	-97.64952	38.90446
	_cons	005724	.0392921	-0.15	0.884	0827351	.0712871

• If it is significant STN can correct the system.

JULKE= Co+C, LTN+ + 42LTN+-2+ 43 STN+-1 4 45TN+-2 + CS URX - - - CGULK - 27 JULX UL- + ets Adjustment coefficient of URX

To determine the adjustment coefficient of URX

		Johansen n	ormalizatio	n restri	ction imp	osed	
	beta	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
_ce1							
	LTN	1					
	STN	8611155	.0437127	-19.70	0.000	9467907	7754402
	URX	3.459075	5.965053	0.58	0.562	-8.232215	15.15036
	cons	-2.117078					

Identification: beta is exactly identified

To determine λ_{URX} we need to go and check the cointegration regression.

LTN = -0.86 STN = + 3.45 URX = 2.11=0

LTN = 2.11 = 0.86 STN = - 3.45 ULX

If LTN_t is increasing, URX_t must decline because the coefficient is negative (3.45) to neutralize the equation. That's why λ_{URX} must be negative.

D_URX	Jur	+	As we determinegative and b is significant			
_ce1 L1.	0002642	.0000965	-2.74	0.006	0004533	000075
LTN						
LD.	0003596	.0002682	-1.34	0.180	0008853	.000166
L2D.	.0008554	.0002695	3.17	0.002	.0003271	.0013836
STN						
LD.	0001647	.0001663	-0.99	0.322	0084907	.0001614
L2D.	.0001481	.000173	0.86	0.392	0001909	.0004872
URX						
LD.	.6638319	.0709657	9.35	0.000	.5247417	.8029221
L2D.	.2022372	.0720254	2.81	0.005	.06107	. 3434045
_cons	.0000745	.0000812	0.92	0.359	0000847	.0002337

URX is not significant in cointegration equation but the adjustment of URX is significant \rightarrow we can think in a Keynesian way such as short tun Phillips curve: it was saying that unemployment is negatively related with inflation.

URX is increasing \rightarrow INF is declining so LRT is declining

We will adopt this explanation but this analysis in fact (This negative relationship) is a short analysis. Cointegration is a long run analysis that is why some can have criticism about this explanation. But this can be done.

The other statistical/econometric solution is to correct the inconsistence by chancing model structure.

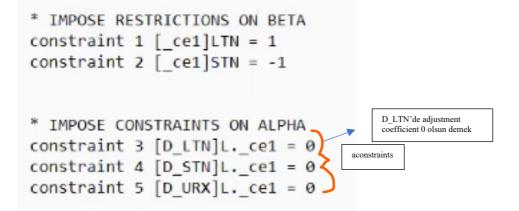
There is a theoretical problem in the model. Possible solutions:

- 1) Check its significance if it is not significant \rightarrow do not bother
- 2) If it is significant, \rightarrow try other models

Check significance

Or

		Johansen n	ormalizatio	n restric	tion impo	osed	
	beta	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
_ce1							
-	LTN	1					
	STN	8611155	.0437127	-19.70	0.000	9467907	7754402
	URX	3.459075	5.965053	0.58	0.562	-8.232215	15.15036
	_cons	-2.117078					


The estimated coefficient of URX is not significant. That is why we can ignore it. But the adjustment coefficient u hat not theory consistent so we need to drop it.

To do that, we need to impose a restriction on the adjustment coefficient of URX.

Now we will see how we can impose some restrictions within the VECM estimation. Basically, two types of restrictions case imposed:

- 1) Constraint on cointegration equation (command: bconstaints)
- 2) Constraint on adjustment coefficients (command: aconstaints)

Now let us restrict that λ_{URX} zero. Aşağıdakiler sadece tanımlamak için:

URX'in adjusted coefficienti istediğimiz işarette değil, 0 olsun istiyoruz. Bunu yazmak için:

• vec LTN STN URX, trend(constant) lag(3) aconstraints(5/5)

We will run this command, but VECM system must be identified this is a mathematical matter. In some cases, the restrictions may cause the unidentification of the system, then the model may not be estimated as we wanted. In this case, the other options of cointegration can be tried.

Steps:

constraint 1 [_ce1]LTN = 1 constraint 2 [_ce1]STN = -1 * IMPOSE CONSTRAINTS ON ALPHA constraint 3 [D_LTN]L._ce1 = 0 constraint 4 [D_STN]L._ce1 = 0 constraint 5 [D_URX]L._ce1 = 0

vec LTN STN URX, trend(constant) lag(3) aconstraints(5/5)

	L1.	.0426181	.0246054	1.73	0.083	0056077	.0908438
	URX						
	L1.	.0324235	.0187196	1.73	0.083	0042663	.0691133
D_STN							
	LTN						
	L1.	.1632555	.0475506	3.43	0.001	.070058	.2564529
	STN						
	L1.	1355136	.0394704	-3.43	0.001	2128742	0581531
	URX						
	L1.	1030978	.0300288	-3.43	0.001	1619531	0442424
D_URX							
	LTN						
	L1.	0	(omitted)				
	STN						
	L1.	0	(omitted)				
	URX						
	L1.	0	(omitted)				

The system became underidentified. Therefore, we did not get what we wanted. We can try other functional forms.

We can change trend(constant) command and try again

vec LTN STN URX, trend(trend) lag(3) aconstraints(5/5) \rightarrow most elastic version

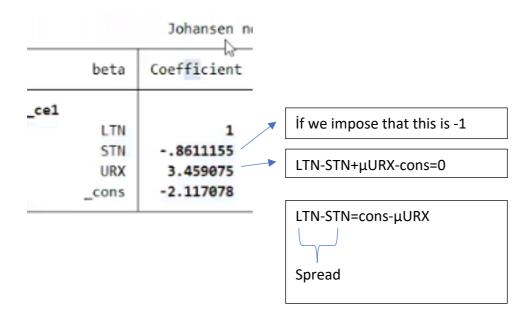
```
Identification: beta is underidentified
LR test of identifying restrictions: chi2(1) = 3.971 Prob > chi2 = 0.046
```

trend(trend) allow the undifferenced data. *A* equations are assumed to

trend(rtrend) defir but allows for linear tren a cointegrating equation

trend(constant) de in the undifferenced data is the default.

trend(rconstant) quadratic trend in the un stationary around nonzer indicators are not allowe


trend(none) defines

So, we cannot convert the model into an identified one, hence we need to interpret the equation as it is.

Due to mathematical reasons we need to put more restrictions on cointegration equation as well. We need also use bconstaints command as well together with aconstraints.

Think like that LTN-STN= 0.5, this difference is known as spread in finance: in this equation, the spread is 0.5

 $LTN-STN=0.5 \rightarrow LTN-STN-0.5=0$

Do not confuse here. We want to find an explanation for a constraint that we will impose. All those things are said to explain why we can impose a restriction for the coefficient of STN (as -1)

Bu nedenle aşağıdaki command'i yazmamız lazım

• vec LTN STN URX, trend(constant) lag(3) aconstraints(5/5) bconstraint(2/2)

	beta	Coefficient	Std. err.	z	P> z	[95% conf.	interval
_ce1							
	LTN	1.204716	.0675646	17.83	0.000	1.072292	1.33714
	STN	-1					
	URX	7607925	7.790138	-0.10	0.922	-16.02918	14.507
	_cons	-2.392311					

Now we got another problem. We want to have LTN-STN Now new coefficient is 1.204716

Then we need to impose another constraint on LTN as a coefficient of 1.

So, the command will be

• vec LTN STN URX, trend(constant) lag(3) aconstraints(5/5) bconstraint(1/2)

vec LTN STN URX, trend(constant) lags(3) aconstraints(5/5) b	constraints(<mark>1</mark> /2)
Juer=>	hiny ator
r uti	Const 1 - STUAL

	[_cel]([_cel](STN = -1						
	beta	Coefficient	Std. err.	z	P> z	[95% conf.	interval]	
_cel								
	LTN	1						
	STN	-1						
	URX	-17.11165	9.095518	-1.88	0.060	-34.93854	.7152332	
	cons	.3224524		$\sum{i=1}^{n}$				
	t of ide	entifying rest	nictions. d		14 08	People S. ch	i2 - 0.001	

LTN-STN-17.11URX+0.322=0 OR LTN-STN=17.11URX-0.32

Spread

1 birim işsizlik arttığında 17 birim faiz oranı artacak anlamına geliyor

Now let us check the VECM equation and check their adjustment coefficients

At least one of these coefficients must be within the expected range and must be significant. If it is not the case, this implies that we cannot see any equilibrium restoration dynamic within the system. This is not compatible with the idea of stable equilibrium.

(1)	[D_URX]]Lce1 = 0					
		Coefficient	Std. err.	z	P> z	[95% conf.	interval]
D_LTN		AUTN			70.95	-notsy	profilet
	_ce1 L1.	013577	.0231231	-0.59	0.557	0588975	.0317435
	LTN	\sim					
	LD.	.5170491	.080754	6.40	0.000	.3587742	.675324
	L2D.	2124916	.0810251	-2.62	0.009	3712979	0536853
	STN						
	LD.	.0502033	.0498628	1.01	0.314	0475259	.1479325
	L2D.	.0587813	.0516851	1.14	0.255	0425196	.1600822
	URX						
	LD.	-10.38006	21.31211	-0.49	0.626	-52.15102	31.3909

 λ_{LTN} is not significant anymore because prob value >0.05

D_STN		ASTA	00	4	جماط	10.05-15-	pritiet
-	_ce1 L1.	.127755	.036812	3.47	0.001	.0556048	.1999052
	LTN LD. L2D.	.3981531 3338124	.1290214 .1294523	3.09 -2.58	0.002 0.010	.1452757 5875342	.6510305 0800906
	STN LD. L2D.	.3909611 .0331538	.0796613 .0825495	4.91 0.40	0.000 0.688	.2348279 1286404	.5470944
	URX LD. L2D.	·36.99605 -20.85327	34.04826 34.20982	-1.09 -0.61	0.277 0.542	-103.7294 -87.90329	29.73731 46.19676
]	_cons	0019045	.03893	-0.05	0.961	078206	.0743969

So we conclude that there is cointegration relationship between LTN, STN and URX as

beta	Coefficient 5
_cel	
LTN	1
STN	-1
 URX	-17.11165 9
 _cons	.3224524
LR test of ide	entifying restri

This relationship implies that LTN-STN=-0.3+17.1URX

Spread_t=-0.3+17.1URX \rightarrow LR relationship

 λ_{LTN} is not significant \rightarrow This means that long run interest rate does not restore the distorted equilibrium.

 Λ_{STN} is significant \rightarrow This means that shot run interest rate adjust to restore the equilibrium of the form like that.

07.04.2023 3rd Lecture

Pesaran Bounds Test

In the cointegration situation all the variables must be cointegrated in the same order. They all must be cointegrated in the order 1. All variables must be I(1)

This technique allows us to test if there is cointegration when some of the variables are I(0) and I(1).

White root tests are used: ADF Test, Phillips Perron, DF-GLS. These tests are ADF variant tests (H₀: There is unit root in the series)

KPSS (H₀: There is no unit root in the series)

Rule: If the prob value is less than 0.05, reject the null hypothesis.

There is not any preinstalled command in Stata for Bound test, we need to install it. There are several packages but we will focus on one of them: ARDL Steps:

- 1. ssc install ardl (adoupdate ardl, update \rightarrow to reinstall)
- 2. webuse lutkepohl2

ARDL: Autoregressive Distributed Lag

 $ARDL(m_1, r_1, r_2) \rightarrow m$: lag length at dependent variable

 r_1, r_2 : lag lengths at explanatory variables

ARDL $(1,0,2) \rightarrow 1$: soldaki değişken yani dependent variable'ın 1 gecikmesi olduğunu gösteriyor

0,2 yazması 2 tane explanatory variable olduğu, ilk explanatory variable'ın 0 gecikmesi diğerinin de 2 gecikmesi olduğu anlamına geliyor.

Steps:

- 1. Selection of the ARDL specification
- 2. ardl ln_inv ln_inc ln_consump

. ardl ln_inv ln_inc ln_consump ARDL(1,0,2) regression

Burada bize en iyi specification'un (1,0,2) olduğunu gösterdi

= 8	Number of obs				thru 1982q4	ample: 1961q1
= 1990.8	F(5, 82)					
= 0.000	Prob > F					
= 0.991	R-squared					
= 0.991	Adj R-squared					
= 0.041	Root MSE				= 158.83176	og likelihood
interval	[95% conf.	P> t	t	Std. err.	Coefficient	ln_inv
						ln_inv
.960322	.7261214	0.000	14.32	.0588646	.8432219	L1.
.177602	-1.073068	0.158	-1.42	.3143463	4477328	ln_inc
						ln_consump
3.01642	.8329761	0.001	3.51	.5487929	1.9247	
.750205	-1.486689	0.514	-0.65	.5622263	3682414	L1.
104437	-1.81534	0.028	-2.23	.4300221	9598887	L2.
		0.517	-0.65	0706539	0460065	_cons

Lag length'i bulmuş olduk.

Yukardaki gibi kısıtlamalar koyabiliriz. Nokta koymak lag length için programın seçmesini söylemek anlamına geliyor. Eğer sayı koyarsak o sayıdaki leg lengthe baksın diyoruz.

Error correction'ı bulmak için de aşağıdaki komut kullanılıyor:

ardl ln_inv ln_inc ln_consump, ec

Engle Granger'da adjustment coefficent 0 ile -1 arasında, Bizim değerimiz de bu aralıkta

	. ardl ln_inv	ln_inc ln_cor	nsump, ec					
	ARDL(1,0,2) r	egression						
	Sample: 1961q	1 thru 1982q4				Number of ot R-squared	= 88 = 0.2228	
	Log likelihoo	d = 158.83176		/		R-squared Adj R-square Root MSE		P değeri 0.05'ten
	D.ln_inv	Coefficient	Std. err.	t	P> t	[95% conf.	. interval]	küçük yan significant
diugter ont	ADJ						0	
Adjustment oefficent	ln_inv L1.	1567781	.0588646	-2.66	0.009	2738786	0396776	
ointegration	LR ln_inc	-2.855838	2.522611	-1.13	0.261	-7.874116	2.16244	P değeri 0.05'ten
quation 🖌	ln_consump 	3.805188	2.600013	1.46	0.147	-1.367067	8.977442	büyük yani significant değil.
	SR							
CM Model	ln_consump D1.	1.32813	.410621	3.23	0.002	.5112741	2.144986	
	LD.	.9598887	.4300221	2.23	0.028	.1044377	1.81534	\ \
nterpretation	_cons	0460065	.0706528	-0.65	0.517	1865575	.0945445	

Yukardaki kutucuklarda yazdığım conditionlar satisfy olduğu için cointegrated olduğunu bulduk.

Cointegration equation:

(n_invt = Bo+ 3.805 hond - 2.85 hincs

1% increase in consumption increases investment by $3.805 \rightarrow$ bu yorumlar aslında doğru değil çünkü

Bunun nedeni de veri setinin küçük olması

Error Correction Model

If there is cointegration (long run relationship) between Y, X and Z we can write as follows

X ve Z'yi sabit tuttuğumuzda ΔX ve ΔZ sıfıra eşit olacak:

 $\Delta M_r = \bigoplus_{t=1}^{t} \alpha_{t} \Delta X_{t} + \alpha_{2} \Delta t_{t}$

If the lambda takes the value of -1, this equation says that if there is a deviation in the long run equilibrium by 20 units, this deviation will be restored.

4thLecture 14.04.2023

net install ardl, from(http://www.kripfganz.de/stata/)

adoupdate ardl, update

This test allows us to test for cointegration for a mixture of I(1) and I(0) series. (Warning: none of the variables can be I(2))

• First, we determine the order of ARDL specification.

$$ALOU(1,0,2)$$

$$ALOU(1,0,2)$$

$$H_{1-1} \times_{1} Z_{1-1} \quad and t$$

$$H_{1-1} \times_{1} Z_{1-1} \quad and t$$

$$H_{1-1} \times_{1} Z_{1-1} = e_{1}t_{1-1}$$

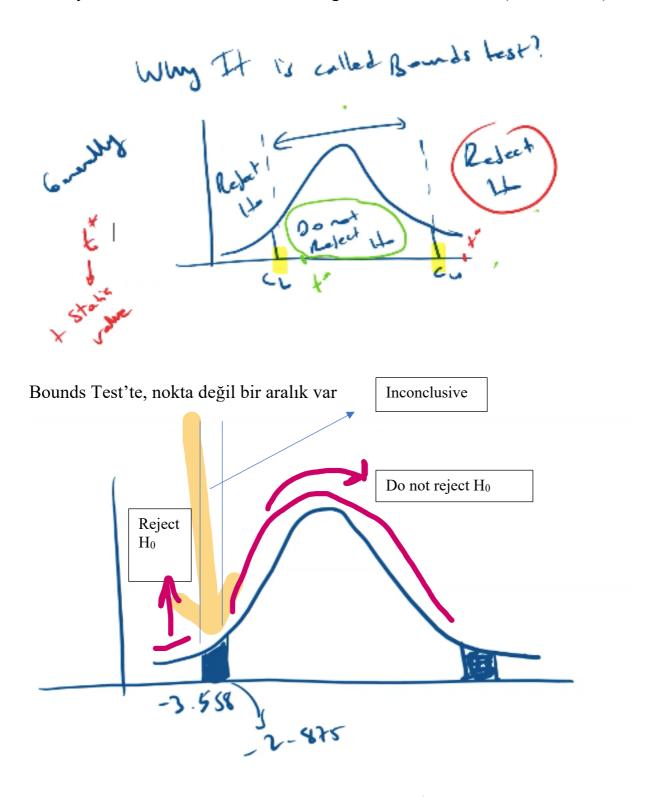
$$H_{1-1} \times_{1} Z_{1-1} = e_{1}t_{1-1}$$

$$H_{1-1} \times_{1} Z_{1-1} = e_{1}t_{1-1}$$

To run bounds test, previously we need to determine ARDL specification. Fortunately, ARDL package of stata, does this for us.

- webuse lutkepohl2
- ardl ln_inv ln_inc ln_consump

Log likelihood	d = 158.83176				R-squared Adj R-squared Root MSE	
ln_inv	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
ln_inv						
L1.	.8432219	.0588646	14.32	0.000	.7261214	.9603224
ln_inc	4477328	.3143463	-1.42	0.158	-1.073068	.1776022
ln_consump						
	1.9247	.5487929	3.51	0.001	.8329761	3.016424
L1.	3682414	.5622263	-0.65	0.514	-1.486689	.7502058
L2.	9598887	.4300221	-2.23	0.028	-1.81534	1044377
_cons	0460065	.0706528	-0.65	0.517	1865575	.0945445

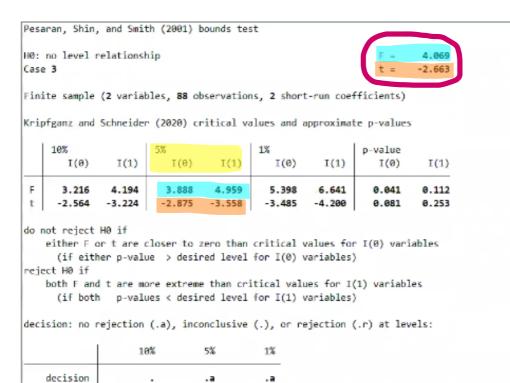

Here we must check if there is autocorrelation, heteroskedasticity, ARCH effect, reset test problem etc.

(Otokorelasyon vb varsa bunu kullanma)

This command suggests a specification for ARDL model, but you must keep in mind that this is valid if there is not any major problems in this model. (Major

problems: AC, HC, ARCH, reset test (test for omitted variable situation) normality)

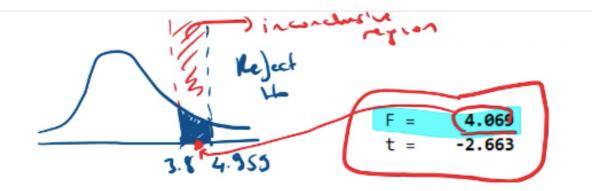
However, for the time being let us assume that there is no such a problem and directly show how we can run the cointegration test of Pesaran (Bounds Test)



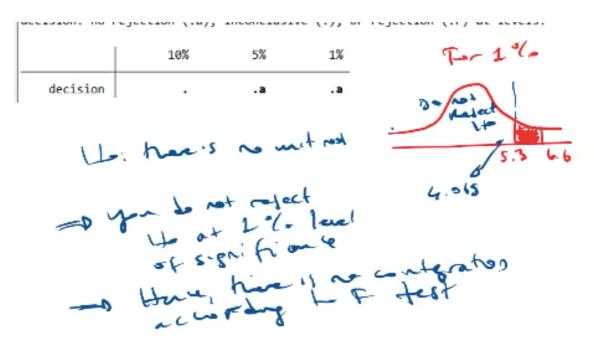
Let us carry out the test:

• ardl ln_inv ln_inc ln_consump, ec \rightarrow auxiliary test

ARDL(1,0,2) re	egression					
Sample: 1961q 3 Log likelihood					Number of ob R-squared Adj R-square Root MSE	= 0.2228
D.ln_inv	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
ADJ						
ln_inv						
L1.	1567781	.0588646	-2.66	0.009	2738786	0396776
LR						
ln_inc	-2.855838	2.522611	-1.13	0.261	-7.874116	2.16244
In consump						
	3.805188	2.600013	1.46	0.147	-1.367067	8.977442
SR		D-				
ln_consump						
D1.	1.32813	.410621	3.23	0.002	.5112741	2.144986
LD.	.9598887	.4300221	2.23	0.028	.1044377	1.81534
_cons	0460065	.0706528	-0.65	0.517	1865575	.0945445


• estat ectest

<u>*F*-test is the main test. If you conclude that there is cointegration, this is very important finding, but it is not sufficient. You need to check also t-test.</u>


For F-test: (for 5%)

H₀: There is no cointegration

It is in inconclusive region. F-test is not giving any conclusion.

For 1%

Warning: If F-test says there is no cointegration, you stop here. You conclude that there is no cointegration. But if the F-test says that there is cointegration, the t-test must also be checked, and it must support there is cointegration. If ttest doesn't support that there is cointegration, the conclusion of F-test must be interpreted as untrustable.

The reported t-value is in fact the t value of the adjustment coefficient of the EC model. So basically t-test is checking if the EC mechanism is working or not for the equilibrium. (if any)

If the EC mechanism does not work, we cannot trust the equilibrium finding of the F-test.

Up to now, we implicitly assume that the ARDL specification suggested by ARDL package of stata can be used. (In other words, this specification is assumed that there is no autocorrelation, no heteroscedasticity [at least], no ARCH, no reset test failure, no non-normality)

Now let us go back and check if there is any autocorrelation and or heteroscedasticity problem in the suggested ARDL specification.

ARDL (1,0,2)

For this purpose, let us rerun the model and check the AC, HC and other diagnostic.

• ardl ln_inv ln_inc ln_consump, ec

RDL(1,0,2) re	egression					
ample 1961q	1 thru 1982q4				Number of obs	
					F(5, 82)	
					Prob > F	
					R-squared	
	the second second				Adj R-squared	
og likelindot	d = 158.83176				Root MSE	= 0.041
ln inv	Coefficient	Std. err.	+	Polt	[95% conf.	interval
	courrent		-	12141	[22/0 COIII.	Incer var
ln_inv					[35/0 com.	Interval
-	.8432219	.0588646	14.32	0.000	.7261214	
ln_inv		.0588646			.7261214	.960322
ln_inv L1.	.8432219	.0588646	14.32	0.000	.7261214	.9603224
ln_inv L1. ln_inc	.8432219	.0588646	14.32	0.000	.7261214	.9603224 .1776022
ln_inv L1. ln_inc ln_consump	.8432219 4477328 1.9247	.0588646 .3143463	14.32 -1.42	0.000 0.158	.7261214 -1.073068 .8329761	.9603224 .1776022 3.016424
In_inv L1. In_inc In_consump	.8432219 4477328 1.9247 3682414	.0588646 .3143463 .5487929	14.32 -1.42 3.51	0.000 0.158 0.001 0.514	.7261214 -1.073068 .8329761 -1.486689	.9603224 .1776022 3.016424

• estat bgodfrey

usch-Godfrey Li	M test for autocorr	relation	
lags(p)	chi2	df	Prob > chi2
1	3.874	1	0.0490

Prob value < 0.05 but very close

Reject $H_0 \rightarrow$ There is AC problem at 5% value of significance (but with a very close value)

• estat hettest

```
. estat hettest
```

Breusch-Pagan/Cook-Weisberg test for heteroskedasticity Assumption: Normal error terms Variable: Fitted values of **ln_inv** H0: Constant variance

chi2(1) = 17.79 Prob > chi2 = 0.0000

Prob value < 0.05

H₀: No heteroscedasticity

Reject $H_0 \rightarrow$ There is HC problem

This model cannot be used with these problems. However, to see the other test, let us carry out them as well)

• estat archlm

lags(p)	chi2	df	Prob > chi
1	11.100		0.000

Prob value < 0.05

H₀: No ARCH effects

Reject $H_0 \rightarrow$ There is ARCH problem

• estat ovtest \rightarrow Reset Test (omitted variable test)

. estat ovtest
Ramsey RESET test for omitted variables
Omitted: Powers of fitted values of ln_inv
H0: Model has no omitted variables
F(3, 79) = 0.84
Prob > F = 0.4767

H₀: Model has no omitted variables

Prob value > 0.05 \rightarrow do not rejected

But if there is AC and HC, this test is not valid, not trustable

→ Now let us try to fix the model

(Teorik olarak gecikme koyarak her zaman AC çözülür. Pratikte bunun tek istisnası mevsimsellik olması)

For this purpose let us try a time span of around 1,5 year (approximately 6 lags)

• ardl ln_inv ln_inc ln_consump, lags(6 6 6)

. ardl ln_inv ln_inc ln_consump, lags(6 6 6)

ARDL(6,6,6) regression

Sample: 1961q3 thru 1982q4

Number of obs	= 86
F(20, 65)	= 488.68
Prob > F	= 0.0000
R-squared	= 0.9934
Adj R-squared	= 0.9914
Root MSE	= 0.0402

Log likelihood = 166.46136

ln_inv	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
ln_inv						
L1.	.6283761	.1275788	4.93	0.000	.3735836	.8831685
L2.	.084336	.1433826	0.59	0.558	2020187	.3706908
L3.	.255578	.1392123	1.84	0.071	0224481	.5336041
L4.	.2232205	.1422923	1.57	0.122	0609569	.5073978
L5.	3218368	.1424885	-2.26	0.027	606406	0372675
L6.	033245	.1289611	-0.26	0.797	2907982	.2243081
ln_inc						
	3372203	.5243752	-0.64	0.522	-1.38447	.7100293
L1.	.3195703	.6399799	0.50	0.619	9585577	1.597698
L2.	7221154	.635151	-1.14	0.260	-1.9906	.5463689
12	5340730	6361705	0.00	0 417	TACAACE	1 704504

L14160103 .7092602 -0.59 0.560 -1.832501 L2309473 .7295255 -0.42 0.673 -1.766436 L37158921 .7080093 -1.01 0.316 -2.129884	
	-2.129884 .6981

• estat bgodfrey

. estat bgodfrey

Breusch-Godfrey LM test for autocorrelation

1	10.217	1	0.0014
lags(p)	chi2	df	Prob > chi2

Prob value < 0.05

Reject $H_0 \rightarrow$ There is AC problem (even worse situation)

Let's try with 8 lags

- ardl ln_inv ln_inc ln_consump, lags(8 8 8)
- estat bgodfrey

reusch-Godfrey L	M test for autocorr	elation	
lags(p)	chi2	df	Prob > chi2
1	0.041	1	0.8401

Prob value > 0.05

Do not reject $H_0 \rightarrow$ There is not AC problem

• estat hettest

```
. estat hettest
Breusch-Pagan/Cook-Weisberg test for heteroskedasticity
Assumption: Normal error terms
Variable: Fitted values of ln_inv
H0: Constant variance
    chi2(1) = 7.95
Prob > chi2 = 0.0048
```

Prob value < 0.05

So there is a problem, let us try imtest (White test variant)

• estat imtest

```
. estat imtest
```

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	p	0.05
Heteroskedasticity Skewness Kurtosis	84.00 35.40 1.32	83 26 1	0.4487 0.1032 0.2501	o HC is etected
Total	120.72	110	0.2280	

Let us adopt this conclusion and continue...

 \rightarrow Now our aim is to decrease the lag length as much as possible

Lag of dependent variable is much more important usually. The other lags can be easily smaller in most of the cases.

Let us jump to ARDL(8,0,2)

I

• ardl ln_inv ln_inc ln_consump, lags(8 0 2)

. ardl ln_in	v ln_inc ln_co	insump, lags	(8 0 2)			
ARDL(8,0,2) r	egression					
Sample: 1962q Log likelihoo					Number of ob F(12, 71) Prob > F R-squared Adj R-square Root MSE	- 844.42 - 0.0000 - 0.9930 d = 0.9919
ln_inv	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
ln_inv ln inv	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
-	Coefficient		t 4.99	P> t 0.000	[95% conf.	
ln inv					.344633	. 8035468
ln inv L1.	.5741399	.115102	4.99	0.000	.344633	.8036468
In inv 11. L2.	.5741399 .1062221 .1818434	.115102	4.99 0.80	0.000 0.424	.344633	.8036468 .3697562 .4427245
In inv 11. L2. L3.	.5741399 .1062221 .1818434	.115102 .1321673 .1308368	4.99 0.80 1.39	0.000 0.424 0.169 0.030	.344633 -,157312 -,0790376 .0282337	.8036468 .3697562 .4427245
In inv 11. L2. L3. L4.	.5741399 .1062221 .1818434 .2849337	.115182 .1321673 .1388368 .1287399	4.99 0.80 1.39 2.21	0.000 0.424 0.169 0.030	.344633 157312 0790376 .0282337 5413793	.8036468 .3697562 .4427245 .5416338 0249437
In inv 11. 12. 13. 14. 15.	.5741399 .1062221 .1818434 .2849337 2831615	.115102 .1321673 .1308368 .1287399 .1295011	4.99 0.80 1.39 2.21 -2.19	0.000 0.424 0.169 0.030 0.032	.344633 157312 0790376 .0282337 5413793	.8036468 .3697562 .4427245 .5416338 0249437 .2803806

• estat bgodfrey \rightarrow Prob >0.05'ten büyük sorun yok

. estat bgodfrey			
Breusch-Godfrey L	M test for autocorr	elation	
lags(p)	chi2	df	Prob > chi2
1	0.002	1	0.9634
		1 1.1.	

H0: no serial correlation

• estat imtest \rightarrow Prob >0.05'ten büyük sorun yok

. estat imtest

Cameron & Trivedi's decomposition of IM-test

р	df	chi2	Source
0.4487	83	84.00	Heteroskedasticity
0.6190	12	9.97	Skewness
0.2135	1	1.55	Kurtosis
0.4949	96	95.51	Total

• estat hettest → There is still problem (Gecikme koyup çözülecek gibi gözükmüyor)

. estat hettest

Breusch-Pagan/Cook-Weisberg test for heteroskedasticity
Assumption: Normal error terms
Variable: Fitted values of ln_inv
H0: Constant variance
 chi2(1) = 18.43
Prob > chi2 = 0.0000

(imtest yapınca sorun yok ama hettest yapınca sorun varsa demek ki önemli bir değişkeni eklemeyi unutuyoruz)

 $ARDL(7,0,2) \rightarrow$ yapınca da problem olmadı, modeli küçültmeye devam edebiliriz

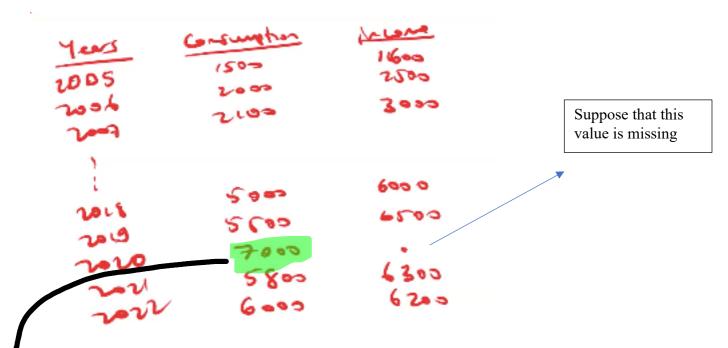
5thLecture 28.04.2023

PANEL DATA ANALYSIS

We have 2 types of data in econometrics

1.Cross Sectional Data 2.Time Series Data

Cross Sectional Data \rightarrow Time is fixed


We have several individuals, firms (cross-sections) etc.

F	G	Н	Ι	J
ID Number	Household	Incomes	Consumption	
1111	Ahmet	1200	1150	
1112	Leyla	1500	250	
1113	Bahar	1800	900	
5005	Barbara	5000	8000	
6225	Mehmet	10000	15000	

Time Series Data

Wrong: Do not use the data such as 2020, 2022, 2024... etc.

What about finding values estimating for 2021, 2023? This is not a good idea.

How can we find the missing value? 6500 ve 6300 arasında bir değer atanacak.

If you estimate 6400 for income, the consumption peak will not match with the value.

But this is a peak value, it will give you lower the t-value.

• Panel Data: It has both time series and cross-sectional data dimension

A	В	С	D	E	F	G	н		J	К	L	
					Years	Country	Consumption	Income				
	N-cross se	ction dimes	ion		2	2010 Turkey	7261	5810.09				
	N-3				2	2011 Turkey	.8891	7111.5				
					1	2012 Turkey	7495	5996.7				
						2013 Turkey	7464	5971.86				
	T=Time set	ries dinesior	1		1	2014 Turkey	6594	5275.62				
	T=11				2	2015 Turkey	8430	6743.23				
					3	2016 Turkey	7821	6257.48				
					2	2017 Turkey	9523	7618.4				
					2	2018 Turkey	5345	4275.68				
					2	2019 Turkey	5531	4423.43				
					2	2020 Turkey	7741	6191.69				
					2	2010 France	8448	6757.44				
					2	2011 France	7370	5895.43				
					2	2012 France	6688	5349.2				
						2013 France	9266	7414.81				
					3	2014 France	9334	7467.96				

B C D E F G H I J K L N=000000000000000000000000000000000000	Turkey Germany France									oluno	e boşluklar ca buna lanced panel ruz
N-cross section dimesion 2010 Turkey -0.1816 N-3 2011 Turkey 0.07998 2012 Turkey 8490 6791.8 2013 Turkey 7449 5959.59 T=Time series dinesion 2014 Turkey 9538 T=11 2015 Turkey 0.46753 2016 Turkey 0.1442 0.1442 2017 Turkey 8557 6847.13 2018 Turkey 9223 7379.05 0 2019 Turkey 6332 5065.21 0 2010 France 5491 4392.37 0 2011 France 6821 5458.27 0 2012 France 9177 7341.28 0 2013 France 6925 5540.69 0		B	C	D	E	F			1 1	K	L
N-3 2011 Turkey 0.07998 2012 Turkey 8490 6791.8 2013 Turkey 7449 5959.59 T=Time series dinesion 2014 Turkey 9538 7629.82 T=11 2015 Turkey 0.46753 0.46753 2016 Turkey 0.1442 0.1442 0.1442 2017 Turkey 8557 6847.13 0.1442 2018 Turkey 9223 7379.05 0 2019 Turkey 6332 5065.21 0 2010 France 2010 France 5491 4392.37 2011 France 6821 5458.27 2012 France 2012 France 9177 7341.28 2013 France 2013 France 6925 5540.69 5540.69								Consumption			
2012 Turkey 8490 6791.8 2013 Turkey 7449 5959.59 T=Time series dinesion 2014 Turkey 9538 7629.82 T=11 2015 Turkey 0.46753 2016 Turkey 0.1442 0.1442 2017 Turkey 8557 6847.13 2018 Turkey 9223 7379.05 0 2019 Turkey 6332 5065.21 0 2010 France 5491 4392.37 0 2011 France 6821 5458.27 0 2012 France 9177 7341.28 0 2013 France 6925 5540.69 0		N-cross s	ection dime	sion				/			
Image: Series dinesion 2013 Turkey 7449 5959.59 T=Time series dinesion 2014 Turkey 9538 7629.82 T=11 2015 Turkey 0.46753 Image: Comparison of the series dinesion 2015 Turkey 0.1442 Image: Comparison of the series dinesion 2016 Turkey 8557 6847.13 Image: Comparison of the series dinesion 2017 Turkey 8557 6847.13 Image: Comparison of the series dinesion 2017 Turkey 8557 6847.13 Image: Comparison of the series dinesion 2018 Turkey 9223 7379.05 0 Image: Comparison of the series dinesion 2019 Turkey 6332 5065.21 0 Image: Comparison of the series dinesion 2020 Turkey 7084 5666.43 0 Image: Comparison of the series dinesion 2010 France 5451 4392.37 0 Image: Comparison of the series dinesion 2011 France 6821 5458.27 0 Image: Comparison of the series dinesion 2012 France 9177 7341.28 0 Image: Comparison of the series dinesion 2013 France 6925 5540.69 0 <td></td> <td>N-3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.07998</td> <td></td> <td></td>		N-3							0.07998		
T=Time series dinesion 2014 Turkey 9538 7629.82 T=11 2015 Turkey 0.46753 2016 2016 Turkey 0.1442 2016 2017 Turkey 8557 2016 2018 2018 2018 2018 Turkey 9223 2019 2019 Turkey 6332 2010 2019 Turkey 6332 2010 2010 France 5491 2011 France 6821 2012 France 9177 2013 France 6925						20	12 Turkey	8490	6791.8		
T=11 2015 Turkey 0.46753 2016 Turkey 0.1442 0.1442 2017 Turkey 8557 6847.13 2018 Turkey 9223 7379.05 5 2019 Turkey 6332 5065.21 2010 Turkey 7084 5666.43 2010 France 5491 4392.37 2011 France 6821 5458.27 2012 France 9177 7341.28 2013 France 6925 5540.69						20	13 Turkey	7449	5959.59		
2016 Turkey 0.1442 2017 Turkey 8557 6847.13 2018 Turkey 2018 Turkey 9223 2019 Turkey 6332 2019 Turkey 6332 2010 Turkey 7084 2010 France 5491 2011 France 6821 2012 France 9177 7341.28 2013 France 2013 France 6925		T=Time se	aries dinesio	n		20	14 Turkey	9538	7629.82		
2017 Turkey 8557 6847.13 2018 Turkey 9223 7379.05 5 2019 Turkey 6332 5065.21 2020 Turkey 7084 5666.43 2010 France 5491 4392.37 2011 France 6821 5458.27 2012 France 9177 7341.28 2013 France 6925 5540.69		T=11				20	15 Turkey		0.46753		
2018 Turkey 9223 7379.05 5 2019 Turkey 6332 5065.21 2020 Turkey 7084 5666.43 2010 France 5491 4392.37 2011 France 6821 5458.27 2012 France 9177 7341.28 2013 France 6925 5540.69						20	16 Turkey		0.1442		
2019 Turkey 6332 5065.21 2020 Turkey 7084 5666.43 2010 France 5491 4392.37 2011 France 6821 5458.27 2012 France 9177 7341.28 2013 France 6925 5540.69						20	17 Turkey	8557	6847.13		
2020 Turkey 7084 5666.43 2010 France 5491 4392.37 2011 France 6821 5458.27 2012 France 9177 7341.28 2013 France 6925 5540.69						20	18 Turkey	9223	7379.05 o		
2010 France 5491 4392.37 2011 France 6821 5458.27 2012 France 9177 7341.28 2013 France 6925 5540.69						20	19 Turkey	6332	5065.21		
2011 France 6821 5458.27 2012 France 9177 7341.28 2013 France 6925 5540.69						20	20 Turkey	7084	5666.43		
2012 France 9177 7341.28 2013 France 6925 5540.69						20	10 France	5491	4392.37		
2013 France 6925 5540.69						20	11 France	6821	5458.27		
						20	12 France	9177	7341.28		
2014 France 9291 7433.61						20	13 France	6925	5540.69		
						20	14 France	9291	7433.61		

Basic Estimation Techniques in Panel Data

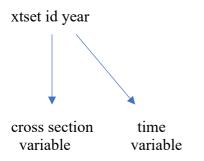
First estimation contributions are as follows:

- 1) Fixed Effects (still can be used)
- 2) Random Effects (still can be used)
- 3) Between Effects (not good)
- 4) Pooled OLS (not good)

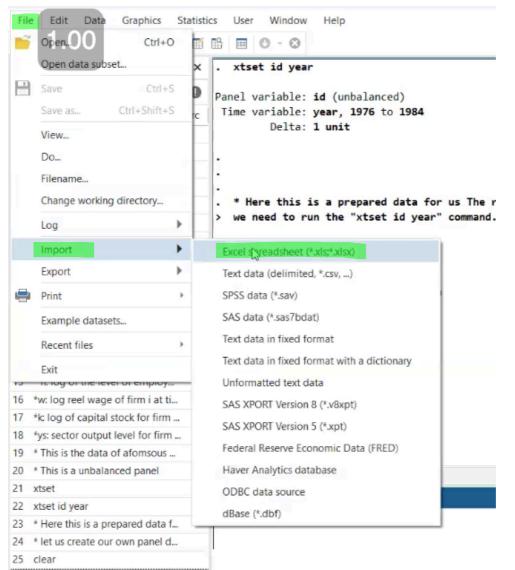
STATA ADIMLARI:

• webuse abdata

Değişkenler:


n log of the level of employment for firm 1 at time t w: log reel wage of firm i at time t k: log of capital stock for firm i at time t ys: sector output level for firm i at time t

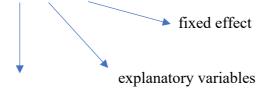
This is the data of afomsous paper of Arellano and Bond (1991) This is an unbalanced data


Datanın balance ya da unbalanced olup olmadığını anlamak için "xtset" yazıyoruz.

```
. xtset
Panel variable: id (unbalanced)
Time variable: year, 1976 to 1984
Delta: 1 unit
```

Here this is a prepared data for us. The required xtset command has been run. But I we have to create our own panel data; we need to run the "xtsat id year" command Eğer panel variable ve time variable otomatik gelmezse kendimiz atamak istersek

Let us create our own panel data



26

	Users (0)	zane\OneDriv	e\Masaüst	ü\abdata.xlsx			Browse
Vor	ksheet:				Cell	range:	
	ata A1:	1261				J1261	
/ 1	mport fi	rst row as var	riable nam	es	Varia	able case:	
	mnort a	l data as strir	0.05		Pres	serve	~
			.9-				
rev	iew: (sh	owing rows 2	2-51 of 1.2	61)			
	YEAR	EMP	WAGE	CAP	INDOUTPT	n	W
						<u> </u>	
2	1976	•					
2	1976 1977	5.0409999	13.1516	.58939999	95.707199	1.6176045	2.5765
	1977	5.0409999 5.5999999		.58939999 .6318			
3	1977 1978		12.3018		97.356903		2.5097-

xtset unit year

- To estimate the fixed model, we write as follows:
- xtreg n w k ys, fe \rightarrow command for fixed effect model

Dependent variable

xed-effects	(within) regr	ession		Number o	f obs	=	1,031
oup variable				Number o			140
squared:				Obs per	group:		
Within =	0.6143				mi	in =	7
Between =	0.8483				av	/g =	7.4
Overall =	0.8348				ma	= X6	9
				F(3,888)		=	471.39
				Prob > F			0.0000
rr(u_i, Xb)	= 0.5926			Prou > r		=	0.0000
rr(u_i, Xb) n	= 0.5926 Coefficient	Std. err.	t				interval]
			t -6.22	P> t		conf.	
n	Coefficient		-6.22	P> t 0.000	[95% c	conf. 374	interval]
n	Coefficient 3106426 .5489458	.0499301	-6.22 25.95	P> t 0.000 0.000	[95% d	conf. 374 346	interval] 2126479 .590457
n k	Coefficient 3106426 .5489458	.0499301 .0211507 .0534193	-6.22 25.95 10.05	P> t 0.000 0.000	[95% c 40863 .50743 .43216	conf. 374 346 579	interval] 2126479 .590457 .6418533
n W k ys	Coefficient 3106426 .5489458 .5370106	.0499301 .0211507 .0534193	-6.22 25.95 10.05	P> t 0.000 0.000 0.000	[95% c 40863 .50743 .43216	conf. 374 346 579	interval] 2126479 .590457 .6418533
n w k ys _cons	Coefficient 3106426 .5489458 .5370106 2159125	.0499301 .0211507 .0534193	-6.22 25.95 10.05	P> t 0.000 0.000 0.000	[95% c 40863 .50743 .43216	conf. 374 346 579	interval] 2126479 .590457 .6418533

• xtreg n w k ys, re \rightarrow command for random effect model

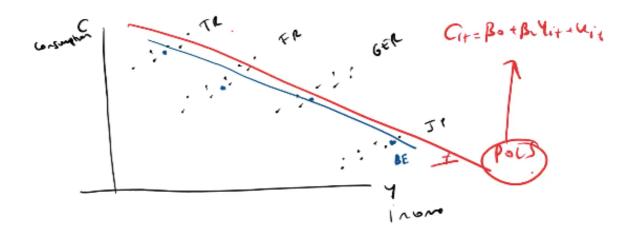
Random-effect:	s GLS regressi	on		Number	of obs	=	1,031
Group variable	e: unit			Number	of group	5 =	140
R-squared:				Obs per	group:		
Within	0.6108				m	in =	2
Between :	0.8479				a	vg =	7.4
Overall :	0.8356				m	ax =	9
				Wald ch	i2(3)	=	2018.16
corr(u_i, X)	= 0 (assumed)				i2(3) chi2		
corr(u_i, X) =	= 0 (assumed) Coefficient	Std. err.	z		chi2	=	0.000
				Prob > P> z	chi2	= conf.	0.0000
n	Coefficient2900276			Prob > P> z 0.000	chi2 [95% 3865	= conf.	0.0000 interval]
n w	Coefficient2900276	.0492318 .0176213	-5.89	Prob > P> z 0.000 0.000	chi2 [95% 3865 .6046	= conf. 202	0.0000 interval
n w k	Coefficient 2900276 .639224	.0492318 .0176213 .0529618	-5.89 36.28	Prob > P> z 0.000 0.000 0.000	chi2 [95% 3865 .6046 .3362	= conf. 202 868 761	0.0000 interval 193535: .673761: .5438820
n ₩ k ys	Coefficient 2900276 .639224 .4400793	.0492318 .0176213 .0529618	-5.89 36.28 8.31	Prob > P> z 0.000 0.000 0.000	chi2 [95% 3865 .6046 .3362	= conf. 202 868 761	0.0000 interval] 1935351 .6737612 .5438820
w k ys _cons	Coefficient 2900276 .639224 .4400793 .2236536	.0492318 .0176213 .0529618	-5.89 36.28 8.31	Prob > P> z 0.000 0.000 0.000	chi2 [95% 3865 .6046 .3362	= conf. 202 868 761	0.0000 interval] 1935351 .6737611 .5438826

Between Effects Estimator

• xtreg n w k ys, re \rightarrow command for between effects model

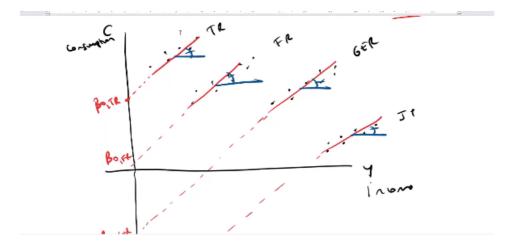
```
. xtreg n w k ys, be
                                                                    1,031
Between regression (regression on group means) Number of obs
                                                            =
Group variable: unit
                                              Number of groups =
                                                                       140
R-squared:
                                              Obs per group:
    Within = 0.5949
                                                                        7
                                                           min =
    Between = 0.8488
                                                           avg =
                                                                        7.4
    Overall = 0.8298
                                                           max =
                                                                          9
                                              F(3,136)
                                                                     254.58
                                                               =
sd(u_i + avg(e_i.)) = .5263562
                                              Prob > F
                                                               =
                                                                     0.0000
              Coefficient Std. err.
                                              P>|t| [95% conf. interval]
                                     t
          n
               -.4553307
                          .1866796
                                                       -.8245009
                                                                  -.0861605
                                      -2.44
                                              0.016
          W
          k
                .8185982
                          .0296513
                                      27.61
                                              0.000
                                                       .7599609
                                                                   .8772354
                1.586058
                          1.154752
                                       1.37
                                              0.172
                                                       -.6975352
                                                                   3.869651
         ys
               -4.496973
                           5.27889
                                      -0.85
                                              0.396
                                                       -14.9363
                                                                   5.942353
      _cons
```

• xtreg n w k ys, re \rightarrow command for between effects model

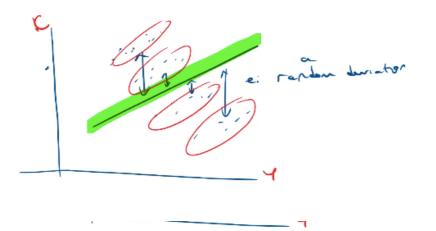

Pooled OLS (POLS estimator)

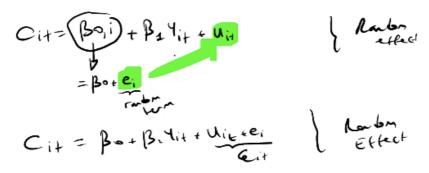
• regress n w k ys \rightarrow command for pooled OLS model

Source	SS	df	MS	Number of obs	=	1,031
				F(3, 1027)	=	1740.1
Model	1548.91136	3	516.303787		=	0.000
Residual	304.717446	1,027	.296706374	R-squared	=	0.835
				Adj R-squared	=	0.835
Total	1853.62881	1,030	1.79963962	Root MSE	=	. 5447
	1					
n	Coefficient	Std. err.	t	P> t [95% co	nf.	interval
n w	Coefficient	Std. err.		P> t [95% co		interval
			-5.67		.8	
W	3669498	.0646708	-5.67 71.90	0.000493851	8	240047


Heterogeneity Bias

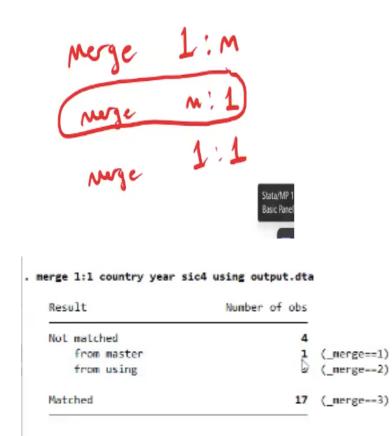
Normalde income arttığında consumption artar ancak her ülkenin consumption ve income level'ları farklı ve panel data bu ülkelerin consumption ve income'larını bir olarak görüp bir bağlantı çıkardığı için sanki income arttıkça consumption azalıyor tarzı bir sonuç çıkartıyor. Buna heterogeneity bias deniliyor.




Fixed effect: Her ülkenin sabit teriminin farklılaşmasına izin veriyor.

6thLecture 05.05.2023

			T
count	try	year	sic4 employment
36	1983	-	
36	1983	3212	4000
36	1984	3211	21000
36	1984	3212	4000
36	1985	3211	22000
36	1985	3212	4000
792	1983	3211	148337
792	1983	3212	4312
792	1984	3211	154611
792	1984	3212	4159
792	1985	3211	145773
792	1985	3212	4516
840	1983	3211	422000
840	1983	3212	176000
840	1984	3211	411000
840	1984	3212	178000
840	1985	3211	376000
840	1985	3212	175000

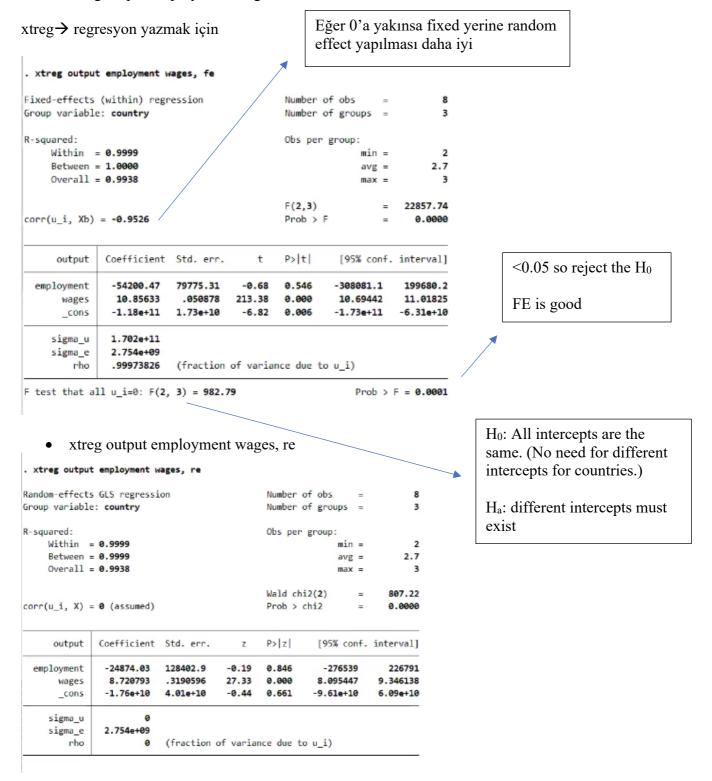

Bu panel data olmuyor çünkü bir de sektör değişkeni var ve her ülke için aynı değil

Today we will learn how to merge several data files and create a unique panel data file

File	Edit Data	Graphics S	tatistics User Window Help	
3	open.50	Ctrl+O		
	Open data subs	et	×/ / // / //	MP-Parallel
	Save	Ctrl+S	Statistics and Data Science	Copyright 19
	Save as	Ctrl+Shift+S	c	StataCorp
	View			4905 Lakeway College Stat
	Do			800-STATA-PO
	Filename			979-696-460
	Change working	directory	Stata license: Unlimited-user 64	-core network p
	Log	•	Serial number: 18461036 Licensed to: TEAM BTCR	
	Import	•		
	Export	÷	Text data (delimited, Scsv,)	
	Print		SPSS data (*.sav)	lp unicode
	Example datase	ts	SAS data (*.sas7bdat)	ions are a is set to
	Recent files		Text data in fixed format	update al
	Exit		Text data in fixed format with a dictionary	Masaüstü\
_	EAR		Unformatted text data	
			SAS XPORT Version 8 (*.v8xpt)	Masaüstü\
			SAS XPORT Version 5 (*.xpt)	
			Federal Reserve Economic Data (FRED)	
			Haver Analytics database	everal dat
			ODBC data source	
			dBase (*.dbf)	

Treat sequendal delimbers as one Overnou now and column ranges.		
Overnou now and column ranges.		
Numeric parang rules		
Use locate based parsing for numbers		
Locate: Torkee (Turkiye)	v	
Overtide decircal secarator:		
Variable	Tape	
country	numeric	v
7241	numeric.	÷
514	numeric.	\sim
employment	numeric	v
	Lovels: Torker (Farkiye) Overnole decimal expansion: Overnole group ng separation: Variable country Skit Skit	Lovels: Torke (Tarkys) Doernde dearnal espanaise: Deernde group og separaturs Vænsble Type coarry numeic ykel nameric ykel nameric stad nameric

sort country sic4



	sic4 using wages.dta	
Result	Number of obs	
Not matched	1	
from master		(_merge==1)
from using	0	(_merge==2)
Matched	20	(_merge==3)
merge m:1 country using	g name.dta	
Result	Number of ob	s
Not matched		
Matched	2	
		-
drop _merge		
save "all.dta", replace		
ile all.dta saved	*	
merge 1:1 country year s	ic4 using valueadded.	dta
Result	Number of obs	
Not matched	2	
from master		(_merge==1)
from using	0	(_merge==2)
Matched	19	(_merge==3)
drop merse		
drop _merge		
<pre>save "C:\may5\all.dta",</pre>		
<pre>save "C:\may5\all.dta",</pre>		
<pre>save "C:\may5\all.dta",</pre>		
<pre>save "C:\may5\all.dta", ile C:\may5\all.dta saved</pre>		
<pre>save "C:\may5\all.dta", ile C:\may5\all.dta saved xtset country year</pre>		
<pre>save "C:\may5\all.dta", ile C:\may5\all.dta saved xtset country year speated time values within</pre>		
<pre>drop _merge save "C:\may5\all.dta", ile C:\may5\all.dta saved xtset country year epeated time values within (451);</pre>	panel	
<pre>save "C:\may5\all.dta", ile C:\may5\all.dta saved xtset country year epeated time values within (451); * here since our current of</pre>	panel data format is in mult	
<pre>save "C:\may5\all.dta", ile C:\may5\all.dta saved xtset country year speated time values within (451); * here since our current of</pre>	panel data format is in mult	ipanel type (we have more than 1 cross sectional unit: country, sic4) we use one of the corss sectioanl unit
<pre>save "C:\may5\all.dta", ile C:\may5\all.dta saved xtset country year speated time values within (451); * here since our current of not run the xtset command</pre>	panel data format is in mult . Here we need to choo	se one of the corss sectioanl unit
<pre>save "C:\may5\all.dta", ile C:\may5\all.dta saved xtset country year peated time values within 451); * here since our current on not run the xtset command</pre>	panel data format is in mult . Here we need to choo	se one of the corss sectioanl unit
<pre>save "C:\may5\all.dta", ile C:\may5\all.dta saved xtset country year peated time values within 451); * here since our current on not run the xtset command</pre>	panel data format is in mult . Here we need to choo	se one of the corss sectioanl unit
<pre>save "C:\may5\all.dta", ile C:\may5\all.dta saved xtset country year speated time values within (451); * here since our current of not run the xtset command * suppose we only work within </pre>	panel data format is in mult . Here we need to choo th sector 3211 in sec4	se one of the corss sectioanl unit
<pre>save "C:\may5\all.dta", ile C:\may5\all.dta saved xtset country year peated time values within 451); * here since our current of not run the xtset command * suppose we only work with keep if sic4==3211</pre>	panel data format is in mult . Here we need to choo th sector 3211 in sec4 1	se one of the corss sectioanl unit
<pre>save "C:\may5\all.dta", ile C:\may5\all.dta saved xtset country year peated time values within 451); * here since our current of not run the xtset command * suppose we only work with keep if sic4==3211</pre>	panel data format is in mult . Here we need to choo th sector 3211 in sec4 1	se one of the corss sectioanl unit
<pre>save "C:\may5\all.dta", ile C:\may5\all.dta saved xtset country year peated time values within 451); * here since our current of not run the xtset command * suppose we only work with keep if sic4==3211 12 observations del</pre>	panel data format is in mult . Here we need to choo th sector 3211 in sec4 1 leted)	se one of the corss sectioanl unit
<pre>save "C:\may5\all.dta", ile C:\may5\all.dta saved xtset country year speated time values within (451); * here since our current of</pre>	panel data format is in mult . Here we need to choo th sector 3211 in sec4 1 leted) ell.dta"	se one of the corss sectioanl unit

• xtset country year

```
. xtset country year
Panel variable: country (strongly balanced)
Time variable: year, 1983 to 1985
Delta: 1 unit
```

• xtreg output employment wages, fe

^{7th}Lecture 26.05.2023

Selecting Appropriate Model Form

Random Effects or Fixed Effects

Info: FE can always be used. FE estimator is always consistent. But we cannot say the opposite. RE cannot always be used. If the appropriate estimation method is FE but you use RE estimator, in this case RE estimation results will be inconsistent.

Recall:

Ensi chary yinow Ut=Bo+Bilt+ ECX+-41 rariable (S)

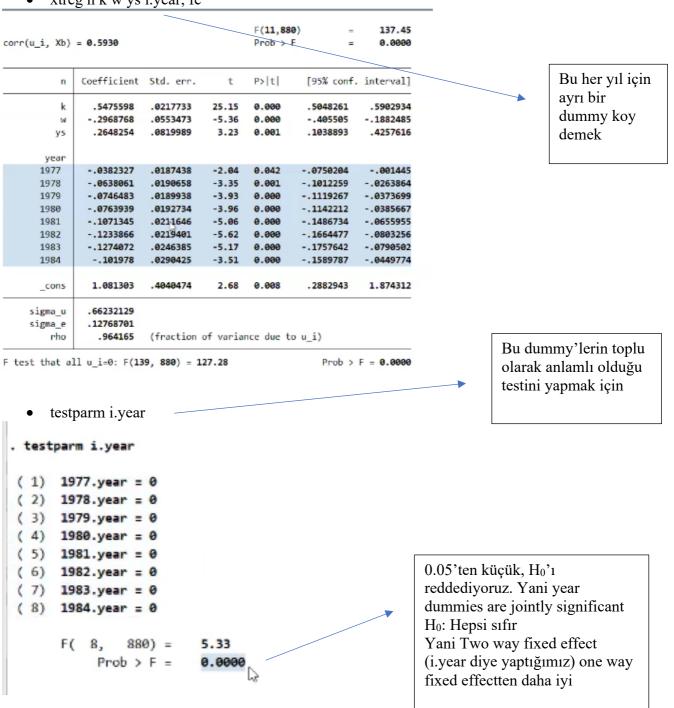
Types of Panel Data

 $T \rightarrow$ Time Series Dimension $N \rightarrow$ Cross Sectional Dimension

 $T > N \rightarrow$ Long Panel (Macroeconomic studies) If T>20 and T>N, then we can carry out Panel Cointegration

 $T>N \rightarrow$ Short Panel (Microeconomic studies)

- webuse abdata
- xtreg n k w, fe


Fixed-effects	(within) regr	ession		Number o	f obs =	1,031
Group variable	e: id			Number o	f groups =	140
R-squared:				Obs per	group:	
Within	0.6143				min =	2
Between	0.8483				avg =	7.4
Overall :	= 0.8348				max =	1
				F(3,888)	=	471.39
corr(u_i, Xb)	= 0.5926			F(3,888) Prob > F		
corr(u_i, Xb)		Std. err.	t	Prob > F	=	0.000
n	Coefficient			Prob > F	= [95% conf.	0.000
n	Coefficient	.0211507	25.95	Prob > F P> t 0.000	= [95% conf. .5074346	0.0000
n k W	Coefficient .5489458 3106425	.0211507 .0499301	25.95 -6.22	Prob > F P> t 0.000 0.000	= [95% conf. .5074346 4086372	0.000 interval .59045 212647
n k w ys	Coefficient .5489458 3106425 .5370108	.0211507 .0499301 .0534193	25.95 -6.22 10.05	Prob > F P> t 0.000 0.000 0.000	= [95% conf. .5074346 4086372 .432168	0.0000 interval .590453 2126478 .641853
n k W	Coefficient .5489458 3106425	.0211507 .0499301 .0534193	25.95 -6.22 10.05	Prob > F P> t 0.000 0.000 0.000	= [95% conf. .5074346 4086372	0.0000 interval .590453 2126478 .641853
n k w ys	Coefficient .5489458 3106425 .5370108	.0211507 .0499301 .0534193	25.95 -6.22 10.05	Prob > F P> t 0.000 0.000 0.000	= [95% conf. .5074346 4086372 .432168	0.0000 interval .590453 2126478 .641853
n k w ys _cons	Coefficient .5489458 3106425 .5370108 2159137	.0211507 .0499301 .0534193	25.95 -6.22 10.05	Prob > F P> t 0.000 0.000 0.000	= [95% conf. .5074346 4086372 .432168	0.0000 interval .590453 2126478 .641853

- \rightarrow To test FE vs POLS, we check if the reported F stat is significant. Here, reported F stat is $F(139, 888) = 123.02 \text{ Prob}=0.00 < 0.05 \rightarrow H_0$: All firms has the same B_0 (POLS), H_a : all firms has different B_0 (FE)
- xtreg n k w ys, re

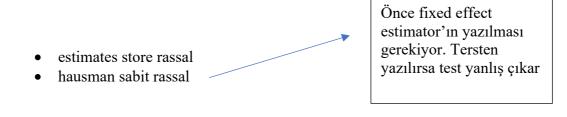
Random-effects	GLS regressi	.on		Number o	of obs	=	1,031
Group variable	_			Number o	of group	5 =	146
R-squared:				Obs per	group:		
Within -	0.6108				n	in –	1
Between :	0.8479				a	vg =	7.
Overall :	0.8356				п	ax =	1
				Wald chi	2(3)	=	2018.10
corr(u i X) -	• 0 (assumed)			Prob > c	:hi2	-	0.0000
cont(u_1, x)	e (assumed)						
n	Coefficient	Std. err.	z	P> z	[95%	conf.	interval
,_,,	Coefficient	Std. err.		P> z 0.000	[95% .6046		interval]
n	Coefficient		36.28	0.000	-	868	.673761
n	Coefficient .639224 2980276	.0176213	36.28	0.000	.6046	868	.673761
n k w	Coefficient .639224 2980276	.0176213 .0492318 .0529618	36.28	0.000 0.000 0.000	.6046	868 201 762	.673761 19353 .543882
n k w ys	Coefficient .639224 2900276 .4400795	.0176213 .0492318 .0529618	36.28 -5.89 8.31	0.000 0.000 0.000	.6046 3865 .3362	868 201 762	.673761 19353 .543882
n k w ys _cons	Coefficient .639224 2900276 .4400795 .2236526	.0176213 .0492318 .0529618	36.28 -5.89 8.31	0.000 0.000 0.000	.6046 3865 .3362	868 201 762	.673761 19353 .543882

We can also estimate a two-way fixed effect model. In this case we also let the B_0 change for each year not only for each firm.

To carry out two-way fixed effect regression, we need to add a dummy variable for each years as follows:

• xtreg n k w ys i.year, fe

Let us carry out the Hausman Test


We need to estimate the model by both RE and FE estimators.

xtreg n k w ys, fe ٠

```
Fixed-effects (within) regression
                                                 Number of obs
                                                                      1,031
                                                               =
       Group variable: id
                                                Number of groups =
                                                                       140
       R-squared:
                                                 Obs per group:
           Within = 0.6143
                                                            min =
                                                                         7
           Between = 0.8483
                                                                        7.4
                                                            avg =
           Overall = 0.8348
                                                            max =
                                                                         9
                                                 F(3,888)
                                                                     471.39
                                                                =
       corr(u_i, Xb) = 0.5926
                                                 Prob > F
                                                                     0.0000
                                                                =
                    Coefficient Std. err. t P>|t| [95% conf. interval]
                 n
                     .5489458 .0211507 25.95 0.000
                                                        .5074346
                                                                   .590457
                 k
                                                        -.4086372
                     -.3106425 .0499301
                 W
                                         -6.22
                                                0.000
                                                                  -.2126478
                ys
                     .5370108
                               .0534193
                                         10.05
                                                0.000
                                                          .432168
                                                                   .6418535
                     -.2159137 .3108411
                                        -0.69
                                                0.487
                                                        -.8259826
                                                                  .3941552
             cons
                     .66133388
           sigma_u
            sigma_e
                     .13015331
               rho
                     .96271232 (fraction of variance due to u_i)
       F test that all u_i=0: F(139, 888) = 123.02
                                                           Prob > F = 0.0000
       estimates store sabit
                                                                Son bulduğum estimate
                                                                sonuçlarını hafızanda tut
                                                                anlamına geliyor
                                                                Sabit ismini biz verdik, başka
                                                                isim de verilebilir
     xtreg n k w ys, re
   ٠
Random-effects GLS regression
                                              Number of obs
                                                               =
                                                                      1,031
                                              Number of groups =
Group variable: id
                                                                        140
R-squared:
                                              Obs per group:
    Within = 0.6108
                                                            min =
                                                                          7
    Between = 0.8479
                                                                         7.4
                                                            avg =
    Overall = 0.8356
                                                                           9
                                                            max =
                                              Wald chi2(3)
                                                                     2018.16
                                                               =
corr(u_i, X) = 0 (assumed)
                                              Prob > chi2
                                                                      0.0000
                                                                =
              Coefficient Std. err. z P>|z| [95% conf. interval]
          n
                 .639224 .0176213
                                     36.28 0.000
                                                        6046868
                                                                    .6737611
          k
               -.2900276 .0492318
                                     -5.89 0.000
                                                       -.3865201
                                                                    -.193535
          W
         ys
                .4400795 .0529618
                                       8.31 0.000
                                                        .3362762
                                                                   .5438828
                                                                   .8361977
      _cons
                .2236526 .3125287
                                       0.72 0.474
                                                       -.3888925
               .52415108
     sigma_u
     sigma_e
               .13015331
               .94192191 (fraction of variance due to u_i)
        rho
```

•

. xtreg n k w ys, re

	(b) sabit	(B) rassal	(b-B) Difference	sqrt(diag(V_b-V_B)) Std. err.
k	. 5489458	.639224	0902782	.0116979
w	3106425	2900276	020615	.0083212
ys	.5370108	.4400795	.0969313	.0069758

Test of H0: Difference in coefficients not systematic

chi2(3) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 62.76 Prob > chi2 = 0.0000 (V_b-V_B is not positive definite)

H₀: Random Effects (RE) H_a: Fixed Effects (FE)

. hausman sabit rassal

Prob: 0.00 < 0.05 \rightarrow Reject the null hypothesis \rightarrow You reject Random Effect Estimator

You must not use Random Effects

Overall	= 0.8355				max =	9
				Wald ch	i2(11) =	2137.45
r(u_i, X)	= 0 (assumed)			Prob >	chi2 =	0.0000
n	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
k	.6458372	.0178711	36.14	0.000	.6108105	.6808638
W	299485	.0544527	-5.50	0.000	4062103	1927598
ys	.1783213	.0833213	2.14	0.032	.0150145	.3416281
year						
1977	0364859	.0192939	-1.89	0.059	0743011	.0013294
1978	0666255	.0195998	-3.40	0.001	1050404	0282107
1979	0803878	.0195241	-4.12	0.000	1186543	0421212
1980	0845393	.0198067	-4.27	0.000	1233598	0457189
1981	1125847	.0217924	-5.17	0.000	1552971	0698724
1982	1180702	.0225988	-5.22	0.000	162363	0737773
1983	1170761	.0253322	-4.62	0.000	1667264	0674259
1984	0844213	.0298113	-2.83	0.005	1428504	0259923
_cons	1.549606	.4113648	3.77	0.000	.7433454	2.355866
sigma_u	.5055356					
sigma_e	.12768701					
rho	.94003031	(fraction	of varia	nce due t	ou_i)	

Let us carry Hausman test for the model with time dummies

• xtreg n k w ys i.year, fe

r(u_i, Xb)	= 0.5930			F(11,880) Prob > F	=	137.45
n	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
k	.5475598	.0217733	25.15	0.000	.5048261	. 5902934
W	2968768	.0553473	-5.36	0.000	405505	1882485
ys	.2648254	.0819989	3.23	0.001	.1038893	.4257616
year						
1977	0382327	.0187438	-2.04	0.042	0750204	001445
1978	0638061	.0190658	-3.35	0.001	1012259	0263864
1979	0746483	.0189938	-3.93	0.000	1119267	0373699
1980	0763939	.0192734	-3.96	0.000	1142212	0385667
1981	1071345	.0211646	-5.06	0.000	1486734	0655955
1982	1233866	.0219401	-5.62	0.000	1664477	0803256
1983	1274072	.0246385	-5.17	0.000	1757642	0790502
1984	101978	.0290425	-3.51	0.000	1589787	0449774
_cons	1.081303	.4040474	2.68	0.008	.2882943	1.874312
sigma_u	.66232129					
sigma_e	.12768701					
rho	.964165	(fraction	of varia	nce due to	u_i)	

F test that all u_i=0: F(139, 880) = 127.28

```
Prob > F = 0.0000
```

- estimates store sabit_dum
- xtreg n k ys i.year, re
- estimates store rassal_dum
- hausman sabit_dum rassal_dum

1	(b)	cients —— (B)	(b-B)	sqrt(diag(V_b-V_B))
	sabit_dum	rassal_dum	Difference	Std. err.
k	.5475598	.6458372	0982774	.0124379
W	2968768	299485	.0026083	.0099114
ys	.2648254	.1783213	.0865042	
year				
1977	0382327	0364859	0017468	
1978	0638061	0666255	.0028194	
1979	0746483	0803878	.0057395	
1980	0763939	0845393	.0081454	
1981	1071345	1125847	.0054503	
1982	1233866	1180702	0053165	
1983	1274072	1170761	0103311	4
1984	101978	0844213	0175567	

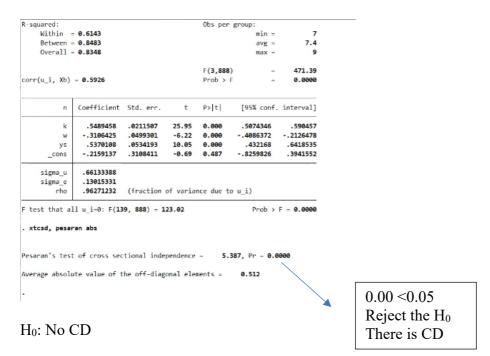
Test of H0: Difference in coefficients not systematic

chi2(11) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 63.39 Prob > chi2 = 0.0000 (V_b-V_B is not positive definite)

Again, FE is pointed out by Hausman test. RE must not be used. The best choice here seems to use a two-way fixed effect model estimation

Cross Sectional Dependence: Yatay kesitler arası otokorelasyon

Korelasyon çıkınca da RE ve FE çöp oluyor. Cross Sectional Dependence çıkıyorsa, buna dikkat edilerek tahmin yapılması gerekiyor.


The usual RE and FE estimators that we did up to now are implicitly assuming that there is no cross-sectional dependence.

If any CD is detected, the RE and FE estimators must be run with Driscoll Kraay standard error (They are robust to CD problem.)

• ssc install xtcsd

Let us test if there is CD problem in usual FE estimation.

- xtreg n k w ys, fe
- xtcsd, pesaran abs

H_A: There is CD

We must use Driscoll Krayy standard error to solve the CD problem in FE estimation (This option is only available in Stata)

- ssc install xtscc
- xtscc n k w ys, fe

Regression wi	th Driscoll-Kr	raay standard	errors	Number	of obs =	1031
Method: Fixed	-effects regre	ession		Number	of groups =	146
Group variable	e (i): id			F(3,	8) =	204.01
maximum lag: 3	2			Prob >	F =	0.0000
				within	R-squared =	0.6143
		Drisc/Kraay				
	Coefficient	std. err.	t	P> t	[95% conf.	interval
п	1					
n k	. 5489458	.0390942	14.04	0.000	.4587943	.6390972
	.5489458 3106425	.0390942	14.04 -2.19	0.000 0.060	.4587943 637443	
k						.6390972 .0161579 .6999662

These values can be used. Let us also test if there is CD problem in RE estimation.

• xtreg n k w ys, re

. xtreg n k w	ys, re						
Random-effect	s GLS regressi	on		Number	of obs	-	1,031
Group variabl	e: id			Number	of group	- 20	140
R-squared:				Obs per	group:		
Within	- 0.6108				 n	nin =	7
Between	= 0.8479				a	avg =	7.4
Overall	= 0.8356				n	nax =	9
				Wald ch	i2(3)	=	2018.16
						_	2020120
corr(u_i, X)	= 0 (assumed)			Prob >	chi2	=	0.0000
corr(u_i, X)	= 0 (assumed) Coefficient	Std. err.	z				
	Coefficient	Std. err.		P> z	[95%		interval]
n	Coefficient		36.28	P> z 0.000	[95%	conf.	interval] .6737611
n	Coefficient .639224 2900276	.0176213	36.28	P> z 0.000 0.000	[95% .6046 3865	conf.	interval) .6737611 193535
n k W	Coefficient .639224 2900276	.0176213 .0492318 .0529618	36.28	P> z 0.000 0.000 0.000	[95% .6046 3865 .3362	conf. 5868 5201 2762	interval] .6737611 193535 .5438828
n k w ys	Coefficient .639224 2900276 .4400795	.0176213 .0492318 .0529618	36.28 -5.89 8.31	P> z 0.000 0.000 0.000	[95% .6046 3865 .3362	conf. 5868 5201 2762	interval] .6737611 193535 .5438828
n k w ys _cons	Coefficient .639224 2900276 .4400795 .2236526	.0176213 .0492318 .0529618	36.28 -5.89 8.31	P> z 0.000 0.000 0.000	[95% .6046 3865 .3362	conf. 5868 5201 2762	interval] .6737611 193535 .5438828

• xtcsd, pesaran abs

Pesaran's test of cross sectional independence = 5.238, Pr = 0.0000 Average absolute value of the off-diagonal elements = 0.500

• xtscc n k w ys, re

. xtscc n k w ys, re

Regression with Driscoll-Kraay standard errors	Number of obs	=	1031
Method: Random-effects GLS regression	Number of groups	=	140
Group variable (i): id	Wald chi2(3)	=	4127.15
maximum lag: 2	Prob > chi2	=	0.0000
corr(u_i, Xb) = 0 (assumed)	overall R-squared	=	0.8356

n	Coefficient	Drisc/Kraay std. err.	t	P> t	[95% conf.	interval]
k w ys _cons	.639224 2900276 .4400795 .2236526	.0151356 .1367317 .0917566 .7391751	42.23 -2.12 4.80 0.30	0.000 0.067 0.001 0.770	.6043212 6053314 .2284885 -1.480888	.6741267 .0252762 .6516705 1.928194
sigma_u sigma_e rho	.52415108 .13015331 .94192191	(fraction	of varia	nce due t	o u_i)	

- estimates store rassal_dk
- xtscc n k w ys, fe
- estimates store sabit_dk
- hausman sabit_dk rassal_dk

 $\begin{array}{l} 0.00 <\!\! 0.05 \\ \text{Reject the } H_0 \\ \text{There is CD} \end{array}$

```
. hausman sabit_dk rassal_dk

    Coefficients —

                                                         sqrt(diag(V_b-V_B))
                   (b)
                            (B)
                                               (b-B)
                 sabit_dk rassal_dk
                                            Difference
                                                             Std. err.
          k
                 .5489458
                                .639224
                                              -.0902782
                                                               .0360454
                                                               .0372587
                -.3106425
                             -.2900276
                                              -.020615
          W
                 .5370108
                              .4400795
                                              .0969313
         ys
                         b = Consistent under H0 and Ha; obtained from xtscc.
          B = Inconsistent under Ha, efficient under H0; obtained from xtscc.
```

Test of H0: Difference in coefficients not systematic

chi2(3) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 11.25 Prob > chi2 = 0.0104 (V_b-V_B is not positive definite)

Prob = 0.0104 < 0.05

We reject the null hypothesis H₀: RE so FE must be used.

If we do not use Driscoll Kraay standard errors, we can also use another alternative. But firstly, I advise you to use Driscoll Kraay since this option allows us still using the RE estimation if it is necessary.

The other two option to solve the CD, AC, HC problems are

- 1. Panel GLS estimator
- 2. PCSE panel estimation

Both are using POLS if we add manually cross-sectional dummies, we can get their FE similar versions. But we cannot estimate them with RE forms.

Warning: Driscoll Kraay standard error is not only solving the CD problem but also it solves the AC and HC problems.

7thLecture 09.06.2023

Random effects ve pooled OLS arasında seçim yapmak gerekiyorsa:

ssc install xttest0

- webuse abddata
- xtreg n w k ys, re

Group variabl	e: id			Number	of groups -	140
R-squared:				Obs per	group:	
Within	- 0.6108				min -	7
Between	- 0.8479				avg -	7.4
Overall - 0.8356					max -	9
				Wald ch	i2(3) -	2018.16
orr(u_i, X)	- 0 (assumed)			Prob >	chi2 =	0.0000
n	Coefficient	Std. err.	Z	P>[z]	[95% conf.	interval]
n	Coefficient	Std. err.	z -5.89	P> z 0.000	[95% conf.	interval]
						193535
w	2900276	.0492318	-5.89	0.000	3865201	-
w Ic	2900276	.0492318	-5.89 36.28	0.000 0.000	3865201	193535
w k ys	2900276 .639224 .4400795	.0492318 .0176213 .0529618	-5.89 36.28 8.31	0.000 0.000 0.000	3865201 .6046868 .3362762	193535 .6737611 .5438828
w k ys _cons	2900276 .639224 .4400795 .2236526	.0492318 .0176213 .0529618	-5.89 36.28 8.31	0.000 0.000 0.000	3865201 .6046868 .3362762	193535 .6737611 .5438828

• xttest0

. xttest0

Breusch and Pagan Lagrangian multiplier test for random effects

n[id,t] = Xb + u[id] + c[id,t] Estimated results: Van SD = sqrt(Var) n 1.79964 1.341506 e .0169399 .1301533 .2747344 .5241511 ú. Test: Var(u) = 0chibar2(01) = 3044.54 Prob > chibar2 = 0.0000

H₀ : POLS H_A : Random Effect estimator

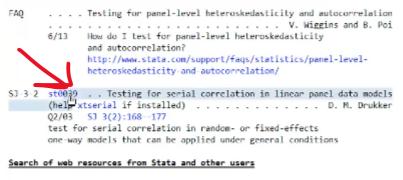
Prob < 0.05 --> Reject null hypothesis POLS is rejected Random effect is better

There is also xttest1 version which handles unbalanced panels as long as there are no gaps in the series.

ssc install xttest1

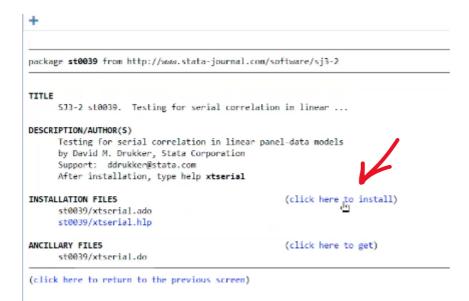
• xttest1

```
Tests for the error component model:
      n[id,t] = Xb + u[id] + v[id,t]
         v[id,t] = lambda v[id,(t-1)] + e[id,t]
      Estimated results:
                             Var
                                  sd = sqrt(Var)
                          1,79964
                                   1.341506
                    п
                          .0169399
                                      .13015331
                    e
                    u
                         .2747344
                                      .52415108
      Tests:
                           = 1940.78 Pr>chi2(1) = 0.0000 < 0.05
         Random Effects, Two Sided:
         ALM(Var(u)=0)
                         = 44.05 ProN(0,1) = 0.0000 < 0.05
         Random Effects, One Sided:
         ALM(Var(u)=0)
         Serial Correlation:
         ALM(lambda=0)
                            = 36.13 Pr>chi2(1) = 0.0000
         Joint Test:
         LM(Var(u)=0,lambda=0) = 3080.67 Pr>chi2(2) = 0.0000
```


H_{0:} POLS H_a: Random Effect estimator

Prob < 0.05 --> Reject null hypothesis POLS is rejected Random effect is better

Wooldridge AC Test (It is mainly designed for POLS, do not use it after RE and FE)


findit xtserial

Search of official help files, FAQs, Examples, and Stata Journals

(contacting http://www.stata.com)

5 packages found (Stata Journal listed first)

- webuse abdata
- xtserial n w k ys (sonuna ,output yazarsak regresyonu da veriyor)

```
. xtserial n w k ys
Wooldridge test for autocorrelation in panel data
H0: no first-order autocorrelation
F( 1, 139) = 142.715
Prob > F = 0.0000
```

$H_{0:}$ no autocorrelation

Prob < 0.05 --> Reject null hypothesis

There is autocorrelation

AC Test for Random Effect

- xtreg n w k ys, re
- xttest1

Bu sefer üstteki ilk ikiye değil alttaki ikiye bakıyoruz

```
Tests:

Random Effects, Two Sided:

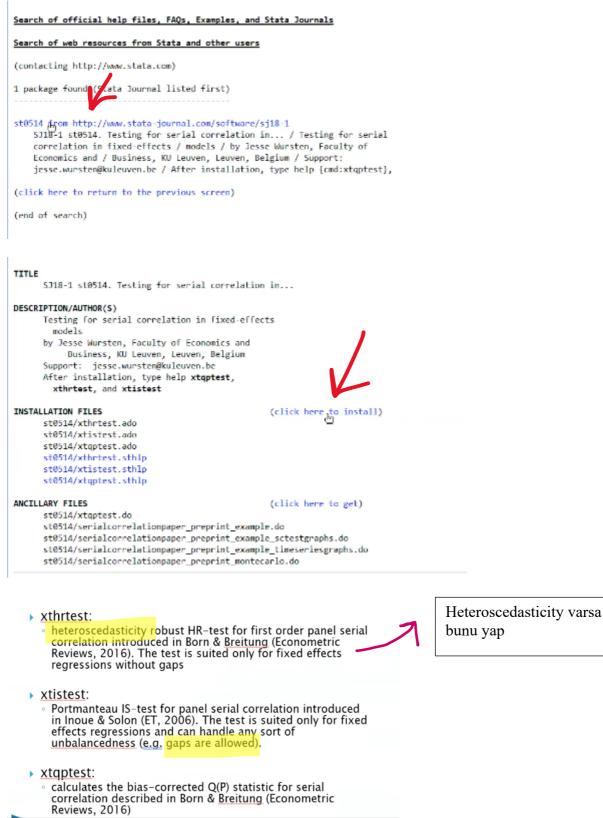
ALM(Var(u)=0) = 1940.78 Pr>chi2(1) = 0.0000

Random Effects, One Sided:

ALM(Var(u)=0) = 44.05 Pr>N(0,1) = 0.0000

Serial Correlation:

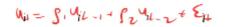
ALM(lambda=0) = 36.13 Pr>chi2(1) = 0.0000


Joint Test:

LM(Var(u)=0,lambda=0) = 3080.67 Pr>chi2(2) = 0.0000
```

H_{0:} no autocorrelation Prob < 0.05 --> Reject null hypothesis

AC Test for Fixed Effect


• findit st0514

- xtreg n w k ys, fe
- predict artik_fe if e(sample), residual
- xtqptest artik_fe, lags(2)

Bias-corrected Born and B Panelvar: id Timevar: year L (lags): 2	Greitung (2016) Q() ↓_: ∧◦ A ()	p)-test on var	iables a	rtik_fe	
Variable	Q(p)-stat	p-value	N	naxT	balance?
artik fe	- 73.03	0.000 -	140	9 -	unbalanced -

There is AR(2) type autocorrelation

Heteroscedasticity robust HR-test

• xthrtest artik_fe

		l					
. xthrtest artik_fe							
Heteroskedasticity-robust B Panelvar: id Timevar: year	orn and Breitun	g (2016) HR-t	est on ar	tik_fe			
Variable	HR-stat	p-value	N	maxT	balance?		
artik_fe	- 0.95	(0.344)	140	9 -	unbalanced		
Notes: Under H0, HR ~ N(0, H0: No first-order seri Ha: Some first order se	al correlation.		10.05	D	- not	reject	Н

There is no autocorrelation

It is a sign that there are harmful effects of heteroscedasticity problems (çünkü sonucu çok değiştirdi, normalde AC yokmuş, HC varmış. HC olduğu için test sonuçları zarar görmüş)

• xtistest artik_fe

<pre>. xtistest artik_fe, lags(2 Incue and Solon (2006) LM-t Panelvar: id Timevar: year p (lags): 2</pre>		-		
Variable	IS-stat p-value	N max	T balance?	
artik_fe	85.36 8.000	148	9 - unbalanced -	
Notes: Under H0, LM ~ chi2 H0: No auto-correlation Ha: Auto-correlation up	of any order.	-•5 -> (Ru)	ut 14-	AC =

Poi-Wiggins HC Test

- webuse abdata
- xtgls n w k ys, panels(heterosk) igls
- estimates store hetero
- xtgls n w k ys, igls
- estimates store homosk
- local df = $e(N_g) 1$
- lrtest hetero homosk , df(`df')

```
. 1rtest hetero homosk , df(`df')
```

```
Likelihood-ratio test
Assumption: homosk nested within hetero
```

LR chi2(139) = 1147.20 Prob > chi2 = 0.0000

 $H_{0:}$ no heteroscedasticity Prob < 0.05 --> Reject null hypothesis

There is heteroscedasticity.

Leven-Brown-Forsythe

- webuse grunfeld
- xtreg mvalue invest kstock, re
- predict artik_re, e
- robvar artik re, by(company)

. robvar artik_fe, by(company)

	Summary o	f e[company,	.t]
Company	Mean 5	td. dev.	Freq.
1	-1.526e-06 5	98.66356	20
2	-1.144e-06 3	09.24462	20
3	-7.629e-07	392.4164	20
4	-1.907e-07 1	23.96299	20
5	2.384e-07 1	33.83164	20
Б	-1.246e-06 1	54.28704	20
7	-4.768e-08 4	0.765497	20
8	2.861e-07 2	02,20971	20
9	-2.444e-07 8	2.558421	20
10	1.341e-08 1	0.212858	20
Total	-4.624e-07 2	61.20041	200
J∂ = 21.70 3	L188 df(9, 190)	Pr > F	= 0.0000000
50 = 20.24	0392 df(9, 190)	Pr ≻ F	= 0.0000000
10 = 21.667	477 df(9, 190)	Pr > F	- 0.0000000

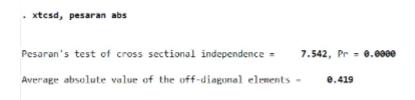
If any of them is less than 0.05 --> reject null hypothesis

Hence, there is HC.

Groupwise HC Test for FE (xttest3)

- ssc install xttest3
- xttest3

```
. xttest3
Modified Wald test for groupwise heteroskedasticity
in fixed effect regression model
H0: sigma(1)^2 = sigma^2 for all 1
chi2 (10) = 7.4e+06
Prob>chi2 = 0.0000
```


Reject null hypothesis

There is HC.

Cross Sectional Dependence Test (CD)

- ssc install xtcsd
- xtreg invest mvalue kstock, fe
- xtcsd, pesaran abs

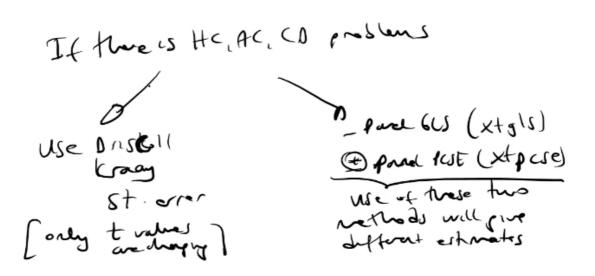
(Run only after FE)

H₀: No Cross-Sectional Dependence

Prob < 0.05

Reject null hypothesis There is cross sectional dependence

For any variable (including residuals) to test CD, we can use xtcd


- ssc install xtcd
- xtcd artik_fe

	x
Average corre	lation coefficients & Pesaran (2004) CD test
Variables ser	ies tested: artik_fe Group variable: company
	Number of groups: 10
	Average # of observations: 22.22 Panel is: unbalanced
	Tunci 13. unbalanceu
Variable	CD-test p-value corr abs(corr)
artik_fe	7.54 0.000 0.251 0.419
	the null hypothesis of cross-section
indepe	idence CD ~ N(0,1) < 0. 05 - Pleject Ho
	indence CD ~ N(0,1) = 0 preservis CD problem. Ft estimation
	in Ft estimetra

Bu testi random effects için de kullanabiliriz

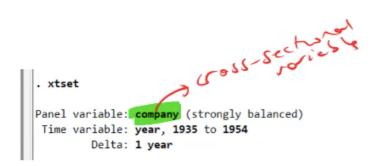
- xtreg mvalue invest kstock, re
- predict, artik_re, ue
- xtcd artik re

Average correlation coefficients & Pesaran (2004) CD test Variables series tested: artik_re Group variable: company Number of groups: 10 Average # of observations: 22.22 Panel is: unbalanced Variable CD-test p-value corr abs(corr) 7.10 artik re 0.000 0.237 0.421 Notes: Under the null hypothesis of cross-section independence CD ~ N(0,1) tere is is q-sien Y

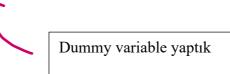
Panel GLS (xtgls)

T N'den ne kadar fazla ise o kadar iyi çalışır.

• xtgls mvalue invest kstock, panels(iid) corr(psar1) \rightarrow no HC, no CD, AC var


AC varsa bunu kullanıyoruz

```
. xtgls mvalue invest kstock, panels(iid) corr(psarl)
Cross-sectional time-series FGLS regression
Coefficients: generalized least squares
Panels:
              homoskedastic
Correlation: panel-specific AR(1)
Estimated covariances
                                              Number of obs =
                       =
                                   1
                                                                        200
Estimated autocorrelations =
                                  10
                                              Number of groups =
                                                                         10
Estimated coefficients =
                                  3
                                              Time periods
                                                              =
                                                                         20
                                              Wald chi2(2)
                                                                     198.53
                                                              =
                                              Prob > chi2
                                                                     0.0000
     mvalue
              Coefficient Std. err.
                                              P> z
                                                        [95% conf. interval]
                                         z
     invest
                4.851986
                           .3587305
                                      13.53
                                              0.000
                                                        4.148887
                                                                   5.555084
     kstock
                -1.16384
                          .2743802
                                       -4.24
                                              0.000
                                                       -1.701616
                                                                   -.6260649
                           142.853
                                              0.000
                615.8822
                                       4.31
                                                        335.8955
                                                                   895.8689
      _cons
```


Here, xtgls and xtpcse are estimating POLS models. We can convert this equation into a FE sense by adding dummy variables for cross sections.

Cross sectional'ın boyutunu görmek için:

• xtset

• xtgls mvalue invest kstock i.company, panels(corr) corr(psar1)

Bu sayede fixed effect haline getirdik

Estimated covariances Estimated autocorrelations Estimated coefficients		= 1 = 10 = 12		Number o Number o Time per	of groups =	_
				Wald chi Prob > 0		
mvalue	Coefficient	Std. err.	z	P> z	[95% conf	. interval
invest	3.463826	. 2924483	11.84	0.000	2.890638	4.03701
kstock	8476416	.1437889	-5.90	0.000	-1.129463	565820
company						
2	-1967.045	142.1807	-13.83	0.000	-2245.714	-1688.37
3	-847.279	161.0433	-5.26	0.000	-1162.918	-531.6399
4	-2280.228	119.0881	-19.15	0.000	-2513.636	-2046.81
5	-2317.808	891.4373	-2.60	0.009	-4064.993	-570.623
6	-3522.934	2007.409	-1.75	0.079	-7457.383	411.514
7	-2529.783	167.8609	-15.07	0.000	-2858.784	-2200.78
8	-2174.153	216.0108	-10.07	0.000	-2597.526	-1750.779
9	-2315.309	267.2869	-8.66	0.000	-2839.181	-1791.43
10	-2714.548	148.6267	-18.26	0.000	-3005.851	-2423.24
	2779.428	122.054	22.77	0.000	2540.206	3018.64

Panel GLS estimation corrected for AR(1) type AC problem in a FE model framework

We cannot manually run RE within panel GLS command.

xtgls mvalue invest kstock, Hc, Ac panels(het) corr(psar1)

. xtgls mvalu	e invest kstor	k, panels(he	t) corr	(psarl)			
Cross-section	al time-series	FGLS regres	sion				
Coefficients: Panels: Correlation:	heteroskedas		s				
Estimated cov	ariances	- 10		Number o	of obs	-	200
Estimated aut	ocorrelations	- 10		Number o	of groups	=	10
stimated coe	fficients	= 3		Time per	iods	=	20
				Wald chi	2(2)	=	62.54
				Prob > c	:hi2	=	0.0000
mvalue	Coefficient	Std. err.	z	P> z	[95% (on <mark>f</mark> .	interval]
invest	3.160785	.4021134	7.86	0.000	2.3726	57	3.948913
	1690298	.2056214	-0.82	0.411	57204	103	.2339807
kstock			4.63	0.000	198.86		490.9463

POLS corrected for HC and AC problems.

To run a FE type regression with these corrections.

• xtgls mvalue invest kstock i.company, panels(het) corr(psar1)

Cross-section	al time-series	FGLS regre	ession			
Coefficients: Panels: Correlation:	generalized heteroskedas panel-specif	tic	es			
Estimated cov	ariances	= 10		Number	of obs =	200
Estimated auto	ocorrelations	= 10)	Number	of groups =	16
Estimated coe	fficients	= 12	2	Time pe	riods =	20
				Wald ch	i2(11) =	2443.48
				Prob >	chi2 -	0.0000
mvalue	Coefficient	Std. err.	z	P> z	[95% conf.	interval
invest	2.109918	.3153107	6.69	0.000	1.491921	2.72791
kstock	1846967	.1194599	-1.55	0.122	4188337	.049440
company						
2	-2020.926	194.6343	-10.38	0.000	-2402.402	-1639.4
3	-1371.225	233.7375	-5.87	0.000	-1829.342	-913.107
4	-2636.634	181.5907	-14.52	0.000	-2992.545	-2280.72
5	-2954.93	306.8592	-9.63	0.000	-3556.363	-2353.49
6	-3915.563	547.4167	-7.15	0.000	-4988.48	-2842.64
7	-3065.465	196.5442	-15.60	0.000	-3450.685	-2680.24
8	-2569.88	218.1457	-11.78	0.000	-2997.438	-2142.32
9	-2854.105	207.0592	-13.78	0.000	-3259.933	-2448.27
10	-3107.432	195.8858	-15.86	0.000	-3491.361	-2723.50
	3172.465	196,4227	16.15	0.000	2787.483	3557.44

Hepsinin correct edilmiş hali için:

xtgls mvalue invest kstock, panels(corr) corr(psar1)

```
. xtgls mvalue invest kstock, panels(corr) corr(psarl)
```

Cross-sectional time-series FGLS regression

```
Coefficients: generalized least squares
Panels:
             heteroskedastic with cross-sectional correlation
Correlation: panel-specific AR(1)
Estimated covariances
                                55
                                            Number of obs
                                                                     200
                       -
                                                            -
Estimated autocorrelations =
                                10
                                            Number of groups =
                                                                     10
Estimated coefficients =
                                 3
                                            Time periods
                                                                      20
                                                            =
                                            Wald chi2(2)
                                                                  345.75
                                                            =
                                            Prob > chi2
                                                                  0.0000
                                                            =
     mvalue
             Coefficient Std. err.
                                            P> Z
                                                     [95% conf. interval]
                                      Z
     invest
               4.397232 .2372556
                                    18.53 0.000
                                                      3,93222
                                                                4,862245
              -.6319713
                         .1241686
                                    -5.09 0.000
                                                    -.8753373
                                                              -.3886053
     kstock
               430.5154 41.06988
                                    10.48 0.000
                                                     350.0199
                                                                511.0109
      cons
```

Fixed effect yapmak istiyorsak:

xtgls mvalue invest kstock i.company, panels(corr) corr(psar1)

xtpcse mvalue invest kstock, correlation(psar1) nmk

```
. xtpcse mvalue invest kstock, correlation(psar1) nmk
note: estimates of rho outside [-1,1] bounded to be in the range [-1,1].
Prais-Winsten regression, correlated panels corrected standard errors (PCSEs)
                                               Number of obs
                                                                         200
Group variable:
                 company
                                                                -
Time variable:
                                               Number of groups =
                 year
                                                                          10
Panels:
                 correlated (balanced)
                                               Obs per group:
Autocorrelation: panel-specific AR(1)
                                                                          20
                                                            min =
                                                                          20
                                                            avg =
                                                                          20
                                                            max =
Estimated covariances
                                   55
                                               R-squared
                                                                      0.5232
Estimated autocorrelations =
                                   10
                                               Wald chi2(2)
                                                                       51.21
                                                                -
Estimated coefficients
                                               Prob > chi2
                                                                      0.0000
                         =
                                   3
                                                                =
                        Panel-corrected
              Coefficient std. err.
                                              P> z
                                                         [95% conf. interval]
     mvalue
                                        Z
                                        7.09
      invest
                4.843699
                           .6827452
                                               0.000
                                                         3.505543
                                                                    6.181855
      kstock
                -1.15131
                           .5700103
                                       -2.02
                                               0.043
                                                        -2.268509 -.0341099
      _cons
                616.9006
                           172.3364
                                        3.58
                                               0.000
                                                         279.1275
                                                                    954.6737
       rhos = .8563595 .8597952
                                          1 .7225431 .9076928 ... .9310709
```

Fixed effect yapmak için: xtpcse mvalue invest kstock i.company, correlation(psar1) nmk

Group variabl	e: company			Number	of obs	-	20
Time variable: year					of groups	-	1
Panels:	correlate	d (balanced	d)	Obs per			
Autocorrelati	on: panel-spe	ecific AR(1))		mi	n =	2
					av	g =	2
					ma	x =	2
Estimated covariances = 55					ed	=	0.969
Estimated autocorrelations = 10					Wald chi2(10) =		
Estimated coe	fficients	- 13	1	Prob >	chi2	-	0.000
mvalue	Coefficient	std. err.	z	P> z	[95% c	onf.	interval
invest	3.46527	.604193	5.74	0.000	2.2810	73	4.64946
kstock	8474568	.3258642	-2.60	0.009	-1.4861	39	208774
company							
2	-1966.682	185.0997	-10.62	0.000	-2329.4	71	-1603.89
3	-846.5072	273.4686	-3.10	0.002	-1382.4	96	-310.518
4	-2279.378	236.2689	-9.65	0.000	-2742.4	56	-1816.29
5	-2316.991	402.606	-5.75	0.000	-3106.0	85	-1527.89
6	0	(omitted)					
7	-2528.915	288.2782	-8.77	0.000	-3093.		-1963.
8	-2173.235	261.0553	-8.32	0.000	-2684.8		-1661.57
9	-2314.428	292.2358	-7.92	0.000	-2887.1		-1741.65
10	-2713.557	269.3682	-10.07	0.000	-3241.5	99	-2185.60
cons	2778.432	271.1482	10.25	0.000	2246.9	01	3309.87

HC ve CD var kabul ediyor.