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A Simple Message to  

Autocorrelation Correctors: Don’t! 

*Mizon (1995) 

 

The model with a correction for autocorrelation is a restriction  

on a more general model with lagged values of both dependent  

and independent variables. We considered a means of testing this  

specification as an alternative to “fixing” the problem  

of autocorrelation. 

**Greene (2012, p.979) 

 

…Indeed, most econometricians would now totally reject  

the use of the GLS procedure. Serial correlation can  

arise from a number of problems which may be readily  

solved in some cases. 

***Cameron (2005, p.252) 

 

In fact, with time series data, autocorrelated residuals are,  

much more often than not, an indication of some error in the  

way we have specified the regression equation rather than  

genuine autocorrelation in disturbances. 

****Thomas (1997, p.307) 

 

 

I. Introduction 

 

The term autocorrelation can be defined as correlation between values 

of a series in time or space.
1
  

 

Recall the “no autocorrelation” assumption of classical linear 

regression model: 

 

 Assumption 5 (A5): No autocorrelation
2
 or zero covariance 

between tu  and  su  [i.e., t sCov(u ,u ) 0 ].  This assumption can be 

made stronger by assuming that the values of ut are all statistically 

independent 
3
. 

                                     
1 This handout is heavily based on the lecture notes of Haluk Erlat (Erlat, 1997).  
2 “No autocorrelation” means that the correlation between any tu  and su  ( t s ) is zero. 
3 If the disturbance terms are statistically independent, the value which the disturbance term takes in one period 

does not depend on the value which it takes in any other period. However, remember that zero correlation does 

not always imply independence. Suppose tu  is a normally-distributed (so it has a symmetric distribution) 

random variable with zero mean. Hence tE(u ) 0 and 3

tE(u ) 0  since 3

tE(u )  is the third moment about the 

mean and if any distribution is symmetric the third moment about the mean must be zero.  Now let 2

s tu u . 
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o This condition states that there should be no systematic 

association between the values of the disturbance term in 

any two observations. 

o If this condition is not satisfied, OLS will again give 

inefficient estimates. 

o Recall that correlation between any random variables G 

and H is given by: 

 

G H

Cov(G,H )


 
  

 

where G and H  are standard deviations of G and H, 

respectively. Therefore, if the correlation between G and H 

is zero ( 0  ), it implies that Cov(G,H ) .  

 

As a result, the “no autocorrelation” assumption implies 

that t sCov(u ,u ) 0  where t s .
4
 

 

o Note that covariance between X and Y is given by  

 

   Cov( X ,Y ) E X E( X ) Y E(Y )    

 

Therefore, no autocorrelation implies zero covariance:  

 

                                                                                                                  
Clearly tu  and su  are not independent: if you know tu , you also know su .  And if you know su , you know the 

absolute value of tu . The covariance of  tu  and su   is   

 
3

t s t s t s t s sCov(u ,u ) E(u .u ) E(u )E(u ) E(u ) 0.E(u ) 0 0.E(u ) 0        

   

Here the correlation 0   since t s

t S

Cov(u ,u )

Var(u )Var(u )
  . This situation is an example where the variables are 

not independent, yet they have zero (linear) correlation, 0  . If tu  and su  are statistically independent then, 

one can always write this identity: t s t sE(u .u ) E(u )E(u ) , which always implies zero covariance and hence 

zero correlation. However, as can be seen from our example that zero covariance or correlation do not always 

imply statistical independence. 
4 Recall that a zero value of the covariance indicates no linear dependence between G and H. 
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   t s t t s sCov(u ,u ) E u E(u ) u E(u ) 0     

 

From Assumption 3, we know that tE(u ) 0  and 

sE(u ) 0 . Thus, no autocorrelation assumption implies 

that  

t s t t s s

0 0

Cov(u ,u ) E u E(u ) u E(u ) 0
     

        
        

 

 

 t sE u u 0  

II. Sources of Autocorrelation 

 

The sources of autocorrelation can be distinguished into two broad 

categories (Erlat, 1997, pp.1-6). The first set of reasons is related to 

the nature of the data being used. The second set of reasons concern 

the specification of the systematic part of the regression equation 

(whether or not there is a misspecification in the model).  

 

A. Genuine (Pure) Autocorrelation Reasons (Data-Based Reasons) 

 

Following Thomas (1997, p.308) we call this type of autocorrelation 

as Genuine Autocorrelation.  

 

Autocorrelation is usually encountered in the use of time series data. 

Following Erlat (1997), Gujarati (2011) and Kennedy (1998), one can 

list following sources which may result to autocorrelation within this 

context. 

 

Inertia or business cycles One source is the behavior of most 

economic time series. Series such as GDP, Price indices, production, 

employment, unemployment exhibit business cycles. Starting at the 

bottom of the recession, when economic recovery starts, most of these 

series start moving upward. In this upward movement the value of a 

series at one point in time is greater than its previous value. Thus 
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there is a “momentum” built into them and it continues until 

something happens (e.g., increase in interest rate, taxes, exchange 

rate, etc.) Therefore, in regression using time series data, successive 

observations are likely to be dependent (Gujarati, 2011, p.414).  

 

Prolonged influence of shocks In time series data, random shocks 

(disturbances) have effects that often persist over more than one time 

period. An earthquake, flood, strike or war, global economic crisis, 

policy shock, will probably affect the economy’s operation in periods 

following the period in which it occurs (Kennedy, 19998, pp.121-122) 

 

To see how prolonged influence of shocks result to autocorrelation 

suppose that we have an equation that relates the aggregate demand 

for money in the economy to a number of explanatory variables. Any 

policy shock that occurs will have an impact on money demanded 

through the error term. Also, a shock usually takes several periods to 

work through the system. This means that, in any one period, the 

current error term contains not only the effects of current shocks but 

also the carryover from the previous shocks. This carryover will be 

related to, or correlated with, the effects of earlier shocks (Hill, 

Griffiths and Judge, 2001, p.258). 

 

Another simple example can be as follows: A major road 

improvement project might reduce traffic accidents not only in the 

year of completion but also in future years. Such impacts which 

persist over multiple years, produce autocorrelated disturbances 

(Stock and Watson, 2012, p.406) 

 

Spatial autocorrelation
5
 In regional cross-sectional data, a random 

shock affecting economic activity in one region may cause economic 

activity in the near (or adjacent) region to change due to close 

economic relations between the regions. Shocks due to weather 

                                     
5 Autocorrelation in cross-section data If we are using a cross-section data which is ordered and carry out a 

Durbin-Watson autocorrelation test then it will be a test for heteroscedasticity rather than for autocorrelation. 

We can only have (genuine) autocorrelation in cross section data if it has a spatial dimension. One example of 

this would be if we were to try to model burglary rates across regions of a city. We might find that one region is 

“exporting” or “importing” burglaries from a contiguous region. It is possible to construct tests by comparing 

pairs of residuals from contiguous regions to give us a test of spatial autocorrelation (Cameron, 2005, p.252) 
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similarities might also be tend to cause the error terms between near 

(adjacent) regions to be related (Kennedy, 1998, p.121). 

 

Cobweb Phenomenon Another source is the Cobweb phenomenon. 

This is usually encountered in the agricultural sector where the 

production decisions react to changes in price with a lag of production 

season. For example, if price at period t is less than the price at t-1, 

then the production in period t+1 is expected to decrease. In this case 

the disturbance in period t+1 will be affected by the disturbance at 

period t.  

 

This process will lead to fluctuations in price around an equilibrium 

or expected value [Pe or E(P)] so that for a given point in time t, the 

disturbances will alternate in sign. 

 

 

 

Source: Adapted from Ezekiel (1938)  

 

 
Figure 1 Cobweb Theorem (Convergent Cobweb) 

 
ut 
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Figure 2 Disturbances [ut=Pt-E(Pt)] in the Case of Covergent Cobweb 

 

 
Figure Y. Negative Autocorrelation (Asteriou and Hall, p.151) 

 

Data Manipulation or Transformation The last data-based source of 

autocorrelation can be stated as the manipulation of the raw data. For 

example, if quarterly data are generated by summing monthly 

observations (and sometimes by dividing by three); then this 

operation, by dampening the fluctuations in the monthly data, will 

generate a smoother quarterly data compared to the monthly data. 

Therefore, the graph plotting the quarterly data will look much 

smoother (showing less fluctuations) than the monthly data. This 

smoothness itself may lead to a systematic pattern in the disturbances 

and thereby autocorrelation. The examples can be seen in the 

following figures. 

t 

(time) 
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Figure 3a Central Bank Reserves (Monthly Data, Million USD) 

 
Figure 3b Central Bank Reserves (Quarterly Data, Million USD) 
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Figure 3c Central Bank Reserves (Annual Data, Million USD) 

 

Two sorts of data problems can be categorized: (1) those that were in 

the data collected and (2) those arising from choices made by the 

researcher over variable definitions (Cameron, 2005, p.254).  

 

 Perhaps surprisingly, problems may be caused by attempts to 

improve the accuracy of data by the recording agencies (such as 

Turkish Statistical Institute, TurkStat). Let us suppose that the 

government decides to make an effort to improve the accuracy 

of data on the variable we have chosen as our dependent 

variable. If this is a gradual process whereby, for example, data 

gets closer to the true value by say 5 percent of the gap at the 

start of each year, this will induce a false dynamic process in the 

Y variable.  

 

 In addition, definitions of the rates of change may induce serial 

correlation in a series that was not originally serially correlated 

due to the form of differencing used. For example, defining rates 

of inflation on a “year on year” basis rather than a continuous 
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basis or using data already adjusted by moving average methods 

may induce serial correlation.  

 

B. Apparent (Impure) Autocorrelation Reasons (Misspecification-
Based Reasons) 

 

If the systematic part of the regression is misspecified this may result 

to autocorrelation in the disturbances. Following Dougherty (2007, 

p.372) we call this type of autocorrelation as Apparent 

Autocorrelation (or Impure Autocorrelation).  

 

 One example is omitted-variable case situation in which we 

leave out a relevant explanatory variable. This omitted 

explanatory variable may be a time series exhibiting a high 

degree of autocorrelation among its observations and this may 

be reflected as autocorrelation in the disturbances. 

 

 Second example can be the specification error by ignoring a 

structural break in the dependent variable and this implies 

leaving out the dummy variables which account for this 

structural shift. 

 

 Another common example is leaving out lagged values of the 

dependent variable when the dependent variable is a function of 

these lagged values together with other explanatory variables. 

 

o This systematic relationship between a dependent variable 

and its lagged values will operate through the disturbance 

term and will result to autocorrelation. 

 

 Fourth misspecification may result from the use of an 

inappropriate functional form for the systematic part of the 

Population Regression Function (PRF). 

o For example suppose that the correct functional form is as 

follows: 
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2

t 0 1 t 1 t tY b b X b X u     

 

But we estimate this model: 

 

 

t 0 1 t tY b b X v    

 

where obviously 2

t 1 t tv b X u    so the disturbances tv  may 

be autocorrelated. This can be seen in the following 

figures. The disturbances which are defined as 

t t tv Y E(Y )   exhibits a definite pattern. They first take 

on positive values then become negative and then again 

positive.  

 

 

 The pattern of autocorrelation plotted in Figure 4b where the 

disturbances show few sign changes, is called positive 

autocorrelation.  

 

 

 
Figure 4a Incorrect Functional Form 
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Figure 3b Incorrect Functional Form (Disturbance terms) 

 

 
Figure X. Positive Autocorrelation (Asteriou and Hall, p.151) 

 

 If the disturbances exhibit frequent sign changes, as in Figure 2, 

then it is said that there is negative autocorrelation. 

 

Note that both forms of autocorrelation (positive or negative) can be 

observed whatever the sources of autocorrelation. 

 

However, note here that, the cure of autocorrelation will be radically 

different depending upon the source of autocorrelation. If the source 

belongs to the second category (misspecification of systematic part of 
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regression) then the solution to the autocorrelation problem is correct 

the specification problem.  

 

III. Consequences of Autocorrelation 

 

The consequences of autocorrelation on the OLS estimates can be 

summarized as follows: 

 

(1) The OLS estimators are still unbiased and consistent.  

 This is because both unbiasedness and consistency do not 

depend on assumption of ( , ) 0,t sCov u u t s   which is in 

case of autocorrelation is violated. 

(2) The OLS estimators will be inefficient and therefore no longer 

BLUE.  

 If we are able to correctly model the autocorrelated errors, 

then there exists an alternative estimator with a lower 

variance. Having a lower variance means there is a higher 

probability of obtaining a coefficient estimate close to its true 

value. It also means that hypothesis tests have greater power 

and a lower probability of a Type II error. 

(3) The formulas for the standard errors usually computed for the 

OLS estimator are no longer correct, and hence confidence 

intervals and hypothesis tests that use these standard errors may 

be misleading. 

 The estimated variances of the regression coefficients based 

on OLS estimates will be biased and inconsistent, and 

therefore hypothesis testing is no longer valid. In most of the 

cases, R
2
 will be overestimated (indicating a better fit than 

the one that truly exists) and the t-statistics will tend to be 

higher (indicating higher significance of our estimates than 

the correct one). 
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Figure Z. Better fit than the true one in AC case (Kennedy) 

  

IV. What to Do When We Find Autocorrelation 

 

Suppose that we find autocorrelation in our model. What will we do?  

 

We have 3 options: 

 

1) Try to find out if the autocorrelation is genuine (or pure 

autocorrelation) autocorrelation, that is, not the result of any model 

misspecification. 

 

2) If you have been convinced that it is genuine (pure) 

autocorrelation,  

 

1) In large samples ( 30, 50T preferably T  ), you may use the 

Newey-West method to obtain standard errors of OLS 

estimators that are corrected for autocorrelation. That is, you can 

still use OLS estimates with Newey-West standard errors. 

 

2) One can use appropriate transformation of the original model so 

that in the transformed model we do not have the problem of 

genuine AC. As in the case of heteroscedasticity, we will use 

some type of GLS methodology: use GLS estimators! 

 

a. If we know   GLS estimator 

b. If we do not know   EGLS estimator 
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3) In some situations we can continue to use OLS method (in small 

samples such as 20T   and when coefficient of correlation 

0.3  ) with OLS standard errors. 

 

V. Forms of Autocorrelation 

 

We will mostly deal with Markov first-order autoregressive 

autocorrelation, denoted by AR(1), where the disturbance term tu  in 

the model 0 1t t tY X u     is generated by the process 

 

1t t tu u    

 

where t  is a random variable whose values in any observation is 

independent of its value in all other observations. Here note t  is a 

white noise:  

 

( ) 0tE    
2 2( )tE    

( ) 0,t sE t s     

 

This type of AC is described as autoregressive because tu  is being 

determined by lagged values of itself plus a random component t , 

sometimes named as innovation (white noise error term). It is 

described as first order because tu  depends only on 1tu   and the 

innovation. A process of the type: 

 

1 1 2 2 3 3 4 4 5 5t t t t t t tu u u u u u                

 

can be described as fifth-order AR process, denoted as AR(5). 
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Another alternative to autoregressive AC is moving-average (MA) 

autocorrelation, where tu is determined as a weighted sum of current 

and previous values of t . For example, the process: 

 

0 1 1 2 2 3 3t t t t tu              

 

would be described as MA(3). In general: 

 

0 1 1 2 2 ...t t t t m t mu               

 

Is called a moving-average process of order m and is denoted by 

MA(m).  

 

We will focus on AR(1) autocorrelation because it seems to be the 

most common type in studies: 

 

1t t tu u    

 

 

We can define 3 different cases: 

 

(1) If 0   then t tu  , so that tu  like t  obeys all the classical 

assumptions, including non-autocorrelation. This is the case of 

no-autocorrelation. 

(2) If 0  , this case is referred as positive AC. It implies that 

positive values of 1tu  will tend to be followed by positive values 

of tu  and negative values of 1tu   will tend to be followed by 

negative values of tu . In practice autocorrelation is in most cases 

positive. The main reasons of this are economic growth and 

cyclical movements of the economy. 

(3) If 0  , this is called negative AC. It implies that positive 

values of 1tu  will tend to be followed by negative values of tu  

and vice versa. In such a case successive disturbances will tend 

to alternate in sign over time. 
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A. The First-Order Autoregressive Scheme Properties  

 

(1) 1t t tu u                 with 1  ,  

 

where 2 2( ) 0, ( ) , ( ) 0,t t t sE E E t s         

 

we can write: 

 

(2)  1 2 1t t tu u      

 

Substituting (2) in (1) yields 

  

 2 1t t t tu u        

 

(3) 2

2 1t t t tu u       

 

We can also write: 

 

(4) 2 3 2t t tu u      

 

Substituting (4) in (3) produces 

 

 2

3 2 1t t t t tu u           

 

(5) 3 2

3 2 1t t t t tu u           

 

If we continue substituting i periods (when i is large, i ) we have 

 

(6) 2 3

1 2 3 .....t t t t tu              

 

Then,    
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0

i

t t i

i

u  






  

 

This is the value of disturbance term when it is autocorrelated with a 

first-order autoregressive scheme(AR1). 

 

Mean of Autocorrelated ut’s 

 

0
0

( ) ( )i

t t i

i

E u E 







 ,  

 

so ( )tE u =0 

 

Variance of Autocorrelated ut’s 

 

1t t tu u    

 

 1( ) ( )t t tVar u Var u Var    

 

 
2

2

1

( )

( ) ( )

t

t t t

Var u

Var u Var u Var



  

 

 
2 2(1 ) ( )tVar u     

 
2

2
( )

(1 )
tVar u 





 

                

Covariance of Autocorrelated ut’s 

 

(1) 1t t tu u    

1 1 1

0 0

( , ) ( ) ( )t t t t t tCov u u E u E u u E u  

 

  
    

     
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 1 1( , )t t t tCov u u E u u   

 

From (1) 

 
2

1 1 1t t t t tu u u u      

 

Taking expectation of both sides 

 

 1t tE u u  =

2

2

1 1

0

( ) ( )

u

t t tE u E u



  



  

  2

1 .t t uE u u    

 

Similarly, 

 

 2t tE u u  = 2 2. u   

 

 t t iE u u  = 2.i u   (When the number of lags increases (i) covariances 

will decrease) 

 

The correlation coefficient between ut and ut-1 

 

1

2

1

2

( , )

( )t t

t t u
u u

t u

Cov u u

Var u


 



    

 

The correlation coefficient between ut and ut-i 

 

2 2

2

2

( , )

( ) ( )
t t i

u u

i
it t i u

u u

ut t i

Cov u u

Var u Var u

 

 
 







    

                                       

Hence the autocorrelated coefficients: 

 

                                         
t t i

i

u u 

  
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As can be seen as the lag increases ( )i   since 1  , the 

autocorrelation coefficient will decrease gradually. 

 

Example 1 ˆ 0.9     1̂ =0.9, 2̂ =0.81, 3̂ =0.729, 4̂ =0.6561 

 

 
In the graph a gradual decrease is observed. 

 

Example 2 ˆ 0.9     1̂ =-0.9, 2̂ =0.81, 3̂ =-0.729, 4̂ =0.6561 

 

 
 

 

 

 

 



ECON 302  - Introduction to Econometrics II      November, 2013 

METU - Department of Economics 

Lecture Notes of Dr. Ozan ERUYGUR  e-mail: oeruygur@gmail.com 

 

 

21 

Example 3 ˆ 0.2    1̂ =0.2, 2̂ =0.04, 3̂ =0,008, 4̂ =00016 

 

 
Hence, when the correlations between the current disturbance term and previous period disturbance is weaker 

(like 0.2  ) the correlations between the current disturbance and the disturbances at more distant lags die 

out relatively quickly. 

VI. Tests of Autocorrelation 

A. Importance of Stationarity 

 

An assumption that we maintain throughout this lecture note dealing 

with autocorrelation is that the variables in our equations are 

stationary. This assumption will take on more when we deal with 

time series analysis. For the moment we note that a stationary variable 

is one that is not explosive, nor trending, and nor wandering aimlessly 

without returning to its mean. These features can be illustrated with 

some graphs. Figures 1(a), 1(b) and 1(c) contain graphs of the 

observations on three different variables, plotted against time. Plots of 

this kind are routinely considered when examining time-series 

variables. The variable Y that appears in Figure 1(a) is considered 

stationary because it tends to fluctuate around a constant mean 

without wandering or trending. On the other hand, X and Z in Figures 

1(b) and 1(c) possess characteristics of nonstationary variables. In 

Figure 1(b) X tends to wander, or is ‘‘slow turning,’’ while Z in 

Figure 1(c) is trending. For now the important thing to remember is 

that this lecture note dealing with autocorrelaion issue is concerned 

with modeling and estimating dynamic relationships between 

stationary variables whose time series have similar characteristics to 

those of Y. That is, they neither wander nor trend (HGL, pp.339-340). 
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ECON 302  - Introduction to Econometrics II      November, 2013 

METU - Department of Economics 

Lecture Notes of Dr. Ozan ERUYGUR  e-mail: oeruygur@gmail.com 

 

 

23 

 
 

Figure 1 (a) Time series of a stationary variable; (b) time series of a 

nonstationary variable that is ‘‘slow-turning’’ or ‘‘wandering’’; (c) 

time series of a nonstationary variable that ‘‘trends.’’ 

B. Autocorrelation Coefficients 

 

The correlation coefficient between tu  and 1tu   can be written as: 

 

1

1

1

( , )

( ) ( )
t t

t t
u u

t t

Cov u u

Var u Var u








  

 

 

1

1 1

2 2

1 1

[ ( )] [ ( )]

[ ( )] [ ( )]
t t

t t t t
u u

t t t t

E u E u E u E u

E u E u E u E u




 

 

 


 
 

 

1

1

2 2

[ ] [ ]

[ ] [ ]
t t

t t
u u

t t

E u E u

E u E u




  
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For a population of sample size N this can be calculated as: 

 

 

1

12

2 2

11 2

t t

N

t tt

u u
N N

t tt t

u u

N

u u

N N






 





 
 

 

1

12

2 2

11 2

t t

N

t tt
u u

N N

t tt t

u u

u u






 




 
 

 

For infinite (or large) populations 2 2

11 2

N N

t tt t
u u  

  . Therefore we 

can obtain two different expressions by (1) substituting 2

12

N

tt
u   for 

2

1

N

tt
u

  and, (2) substituting 2

1

N

tt
u

  for 2

12

N

tt
u  . 

 

 

(1) Let us substitute 2

12

N

tt
u   for 2

1

N

tt
u

 . Then, we get 

 

1

12

2

12

t t

N

t tt
u u N

tt

u u

u












 

 

 

Now recall the AR(1) process: 

 

1. 1,...,t t tu a u t N    

 

If we apply OLS to this AR(1) process for the whole population: 

 

12

2

12

N

t tt

N

tt

u u
a

u









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which is clearly the same with   for large populations. This is the 

reason why in most books the AR(1) model is given in the form: 

 

1t t tu u    

 

 

where   is first-order autocorrelation coefficient. 

 

(1) Let us substitute 2

1

N

tt
u

  for 2

12

N

tt
u  . Then, we get 

 

 

1

12

2

1

t t

N

t tt
u u N

tt

u u

u












 

 

 

which is the population autocorrelation coefficient. This expression 

can not be calculated due to two reasons: (1) Most of the cases we do 

not know population values, and (2) the tu ’s are not observable. 

 

The solution to first problem is easy: we can use sample instead of 

population. If we would observe tu ’s, then we would estimate   over 

a sample of size T as (r is the autocorrelation coefficient calculated 

over a sample): 

 

 

1

12

2

1

t t

T

t tt
u u T

tt

u u
r

u










 where t=1,2,…,T 

 

However, since tu ’s are unobservable, all we can do is to use its 

estimated counterparts namely ˆtu ’s, that is, residuals. Hence the first-

order sample autocorrelation coefficient, ̂ , will be: 

 



ECON 302  - Introduction to Econometrics II      November, 2013 

METU - Department of Economics 

Lecture Notes of Dr. Ozan ERUYGUR  e-mail: oeruygur@gmail.com 

 

 

26 

12

2

1

ˆ ˆ
ˆ

ˆ

T

t tt

T

tt

u u

u










   where t=1,2,…,T 

 

More generally, the k-th order sample autocorrelation for tu  that 

gives the correlation between observations that are k periods apart (the 

correlation between tu  and t ku  ) is given by 

 

1

2

1

ˆ ˆ
ˆ

ˆ

T

t t kt k
k T

tt

u u

u


 







 where t=1,2,…,T 

 

1. Individual Significance of Autocorrelation Coefficients and 

Correlogram 

 

Suppose that applying the formula above to the series ˆ
tu  yields, for 

the first four sample autocorrelations: 

 

1 2 3 4
ˆ ˆ ˆ ˆ0.494, 0.411, 0.154, 0.200        

 

The autocorrelations at lags one and two are moderately high: those at 

lags three and four are much smaller – less than half the magnitude of 

the earlier ones. How do we test whether an autocorrelation is 

significantly different from zero? Let the kth order population 

autocorrelation be denoted by k . Then, when the null hypothesis 

0 : 0kH    is true, it turns out that ˆ
k has an approximate normal 

distribution with mean zero and variance 1/T (Hill, Griffths and Lim, 

2011, p.349). Thus a suitable test statistic is: 

 

 
ˆ 0

ˆ (0,1)
1/

k
kZ T N

T





   
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At a 5% significance level, we reject 0 : 0kH    when ˆ 1.96kT   

or ˆ 1.96kT   . 

 

Let us assume that for the series ˆtu , T=98, then the values of the test 

statistic Z for the first four lags are: 

 

1

2

3

4

98.(0.494) 4.89

98.(0.414) 4.10

98.(0.154) 1.52

98.(0.200) 1.98

Z

Z

Z

Z

 

 

 

 

 

 

Thus, we reject the hypothesis 0 1: 0H    and 0 2: 0H   , we have 

insufficient evidence to reject 0 3: 0H   , and 4̂ is on the borderline 

of being significant. We conclude that, the residuals exhibits 

significant serial correlation (autocorrelation) at lags one and two. 

 

Correlogram 

 

A useful device for assessing the significance of autocorrelations is a 

diagrammatic representation of the correlogram (Hill, Griffiths and 

Lim, 2011, pp.349-350). A plot of the autocorrelations ˆ
k  against the 

lag k is called the correlogram. This plot provides a first idea of 

possible serial correlation. The correlogram, also called the sample 

autocorrelation function, is the sequence of autocorrelations 

1 2 3
ˆ ˆ ˆ, , ,...   . It shows the correlation between observations that are 

one period apart, two periods apart, three periods apart, and so on. We 

indicated that an autocorrelation ˆ
k  will be significantly different 

from zero at a 5% significance level if ˆ 1.96kT   or if 

ˆ 1.96kT   . Alternatively, we can say that ˆ
k  will be significantly 

different from zero if 
1.96

ˆ
k

T
   or if 

1.96
ˆ

k
T




 . By drawing the 
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values 
1.96

T
  as bounds on a graph that illustrates the magnitude of 

each of the ˆ
k , we can see at a glance which correlations are 

significant. 

 

A graph of the correlogram for ˆ
tu  for the first 12 lags appears in 

Figure K below. The heights of the bars represent the correlations and 

the horizontal lines drawn at 
2

0.202
98

    are the significance 

bounds. We have used 2 rather than 1.96 as a convenient 

approximation. We can see at a glance that 1̂  and 2̂  are 

significantly different from zero, that 4̂  and 12̂  are bordering on 

significance, and the remainder of the autocorrelations are not 

significantly different from zero.  

 

Note that your software may not produce a correlogram that is exactly 

the same as Figure Z. It could use spikes instead of bars to denote the 

correlations, it might provide a host of additional information, and the 

width of its significance bounds might vary with different lags. If the 

significance bounds vary, it is because they use a refinement of the 

large sample approximation. 

 

 
Figure K. Corellogram for ˆtu  
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2. Joint Significance of Autocorrelation Coefficients 

 

Box–Pierce Portmanteau test (or simply Box–Pierce test) for the joint 

significance of the first m autocorrelation coefficients is given by: 

 

1
ˆ

m

m kk
BP T 


     (8) 

 

and 2 ( )mBP    under the null hypothesis of no serial 

autocorrelation. 

 

Sometimes the correlations in (8) are weighted because higher order 

autocorrelations are based on fewer observations. This gives the 

Ljung–Box test (also denoted as the Q-test): 

 

1

2
ˆ

m

kk

T
LB T

T k








  

 

and 2 ( )pLB    under the null hypothesis of no serial 

autocorrelation. 

 

The Box–Pierce test and the Ljung–Box test require that the 

regressors Xt in the model are non-stochastic (fixed): for example, if 

the model has lagged terms of dependent variable as explanatory 

variable (such as Yt-1), this tests cannot be used. 

 

C. Durbin-Watson Test 

 

The most frequently used statistical test for the presence of serial 

correlation is the Durbin-Watson (DW) test (Durbin and Watson, 

1950), which is valid when the following assumptions are met: 

 

(1) The regression model involves an intercept term 

(2) Serial correlation is assumed to be of first-order, 

(3) The equation does not include a lagged dependent variable as 

an explanatory variable (i.e. Yt-1) 
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Consider the model: 

 

0 1 1 2 2 ...t t t k tk tY X X X u          

 

where 1t t tu u    with 1   

 

Then under the null hypothesis 0 : 0H    the DW test involves the 

following steps: 

 

Step 1 Estimate the model by OLS and obtain the residuals, ˆtu ’s. 

Step 2 Calculate the DW test statistic as follows: 

 
2

12

2

1

ˆ ˆ( )

ˆ

T

t tt

T

tt

u u
DW

u










 

 

Step 3 Construct table given below, substituting with your DW 

critical values dU, dL. Note that table of critical values according to /k  

which is the number of explanatory variables excluding the intercept 

term. 

Step 4a  To test for positive serial correlation the hypotheses are: 

 

0 : 0H    no autocorrelation 

: 0AH    positive autocorrelation 

 

Step 4b  To test for negative serial correlation the hypotheses are: 

 

0 : 0H    no autocorrelation 

: 0AH    positive autocorrelation 
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A Rule of Thumb for the DW Test 

 
2

12

2

1

ˆ ˆ( )

ˆ

T

t tt

T

tt

u u
DW

u










 

 
2 2

1 12

2

1

ˆ ˆ ˆ ˆ( 2 )

ˆ

T

t t t tt

T

tt

u u u u
DW

u

 



 




 

2 2

1 12 2 2

2

1

ˆ ˆ ˆ ˆ2

ˆ

T T T

t t t tt t t

T

tt

u u u u
DW

u

   



 

  


 

2 2

1 12 2 2

2 2 2

1 1 1

ˆ ˆ ˆ ˆ
2

ˆ ˆ ˆ

T T T

t t t tt t t

T T T

t t tt t t

u u u u
DW

u u u

   

  

  
  

  
 

 

For large samples, 

2

2

2

1

ˆ
1

ˆ

T

tt

T

tt

u

u









 and 

2

12

2

1

ˆ
1

ˆ

T

tt

T

tt

u

u









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12

2

1

ˆ

ˆ ˆ
2 2

ˆ

T

t tt

T

tt

u u
DW

u







 



 

ˆ2 2DW    

ˆ2(1 )DW    

 

where recall that ̂  is the estimated correlation coefficient between ut 

and ut-1.  

 

The implications of this expression are as follows: 

 

(1) If there is no AC, then  =0 and DW=2.  

 Hence a value of DW near to 2 indicates that there is no 

evidence of serial correlation.  

 

(2) If there is exact positive AC, then  =1 and DW=0 

 Strong positive autocorrelation means that   will be close 

to +1 and DW will get very low values (close to zero) for 

positive autocorrelation. 

 

(3) If there is exact negative AC, then  =-1 and DW=4 

 When   is close to -1 then DW will be close to 4 

indicating strong negative serial correlation. 

 

Hence, we can see that, as a rule of thumb, when DW statistic is very 

close to 2 then we do not have serial correlation. 

 

Example 1 

 

You are given the following estimation results: 

 
ˆ
tY = 36.1882 + 0.2928 Xt2 + 0.0023 Xt3   t = 1, …, 30 

 

R
2
 = 0.98  DW = 0.34435 
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where; 

 

Yt is real consumption expenditure 

Xt2 is real disposable income 

Xt3 is real wealth 

 

Test for the presence of first-order positive autocorrelation. 

 

Solution 

 

First let us look at the residual plots. The plots implies positive AC. 

 

 
 

DW = 0.34435 

From Tables dL = 1.284; dU = 1.567 

So we can reject the null of zero autocorrelation against the 

alternative that  > 0 

 

Example 2 

 

DW=0.1380, T=32, /k =1 

dL=1.373 and du=1.502 at 5% significance level. 

Since DW=0.1380<dL, reject H0 of no positive correlation at 0.05 

level of significance, so there is positive AC. 
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Example 3 

 

DW=1.43, T=50, /k =4 

dL=1.378, and du=1.721 at 5% significance level. 

Since dL<DW<du, inconclusive regarding whether there is positive 

autocorrelation. 

 

Example 4 

 

DW=0.37, T=38, /k =2 

dL=1.176, and du=1.388 at 5% significance level. 

Since DW<dL there is strong evidence that there is positive 

autocorrelation at 0.05 level of significance. 

 

 
 

D. Breusch-Godfrey LM Test for Serial Correlation 

 

The DW test has several drawbacks that make its use inappropriate in 

various cases. For instance (a) it may give inconclusive results, (b) it 

is not applicable when a lagged dependent variable is used, and (c) it 

can't take into account higher orders of serial correlation. 

 

For these reasons Breusch (1978) and Godfrey (1978) developed an 

LM test which can accommodate all the above cases.  

 

Consider the model: 

 

0 1 1 2 2 ...t t t k tk tY X X X u             (1) 
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where t=1,2,…,T and 

 

1 1 2 2 ...t t t m t m tu u u u           with 1    (2) 

 

The Breusch-Godfrey LM test combines these two equations by 

putting (2) into (1): 

 

 

0 1 1 2 2

1 1 2 2

...

...

t t t k tk

t t m t m t

Y X X X

u u u

   

     

    

    
  (3) 

 

Since u’s are unobservable, we use the residuals, û ’s. Hence the 

auxiliary regression of LM test becomes: 

 

0 1 1 2 2

1 1 2 2

...

ˆ ˆ ˆ...

t t t k tk

t t m t m t

Y X X X

u u u

   

     

    

    
  (3*) 

 

On the other hand, note that: 

 

0 1 1 2 2
ˆ ˆ ˆ ˆ ˆ...t t t k tk tY X X X u          

 

hence we can rewrite (3*) as: 

 

0 1 1 2 2

0 1 1 2 2

1 1 2 2

ˆ ˆ ˆ ˆ ˆ...

...

ˆ ˆ ˆ...

t t k tk t

t t k tk

t t m t m t

X X X u

X X X

u u u

   

   

     

     

   

    

 

 

Rearranging this equation yields: 

 
0 1 2

0 0 1 1 1 2 2 2

1 1 2 2

ˆ ˆ ˆ ˆˆ ( ) ( ) ( ) ... ( )

ˆ ˆ ˆ...

k

t t t k k tk

t t m t m t

u X X X

u u u

  

       

     

        

    

 

 

Then finally we can write: 



ECON 302  - Introduction to Econometrics II      November, 2013 

METU - Department of Economics 

Lecture Notes of Dr. Ozan ERUYGUR  e-mail: oeruygur@gmail.com 

 

 

36 

 

0 1 1 2 2

1 1 2 2

ˆ ...

ˆ ˆ ˆ...

t t t k tk

t t m t m t

u X X X

u u u

   

     

    

    
  (4) 

 

and the null and the alternative hypotheses can be stated as: 

 

0 1 2: ... 0mH       , hence  no autocorrelation 

AH : at least one of the  ’s is not zero, thus, serial correlation. 

 

The steps for carrying out the test are the following: 

 

Step 1 Estimate the original model (1) by OLS and obtain the 

residuals, ˆtu . 

 

Step 2 Run the following regression model with the number of lags 

used (m) being determined according to the order of serial correlation 

you are willing to test. Get the R
2
 of equation (4). 

 

0 1 1 2 2

1 1 2 2

ˆ ...

ˆ ˆ ˆ...

t t t k tk

t t m t m t

u X X X

u u u

   

     

    

    
   (4) 

 

where the usable sample size to estimate the equation above will be 

T m  due to m lagged residual terms. Because ˆ
k k   are centered 

around zero, if equation (4) is a regression with significant 

explanatory power, that power will come from 1
ˆ

tu  , 2
ˆ

tu   and ˆt mu  . 

 

Step 3 Compute the LM statistic  

 
2( )LMBG T m R   

from the OLS regression run in step 2.  

 

Note that 2

LM mBG   hence if this LM statistic is bigger than the 2

m  

critical value for a given level of significance, then we reject the null 

of serial correlation and conclude that serial correlation is present.  
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Choice of lag order Note that the choice of m is arbitrary in LM test. 

However, the periodicity of the data (quarterly, monthly, weekly etc.) 

will often give us a suggestion for the size of m. Some possible 

decision rules are as follows: (1) you may test for several orders, (2) 

you can use autocorrelation coefficients to decide for the order, (3) 

you may check the significance of the auxiliary regression’s estimated 

coefficients for residuals, (4) one can use the so-called Akaike and 

Schwarz information criteria to select the lag length (5) for annual 

data 1
st
 order, for quarterly data 4

th
 order, and for monthly data 12

th
 

order, etc., can be chosen. 

 

Example of Breusch-Godfrey LM Test 

 

Consider the model: 

 

0 1 2ln ln lnt t t tC a a DI a P u     

 

where tC  is consumption, tDI  is disposable income and tP  is price, 

and suppose that we have a quarterly data for them. We proceed by 

testing for fourth-order serial correlation due to the fact that we have 

quarterly data. In order to test for serial correlation of fourth order we 

use the Breusch- Godfrey LM test. The results of this test are shown 

in Table K1. 

 

We can see from the first columns that the values of both the LM 

statistic and the F statistic are quite high, suggesting the rejection of 

the null of no serial correlation. It is also evident that this is so due to 

the fact that the p-values are very small (smaller than 0.05 for a 95% 

confidence interval). So, serial correlation is definitely present. 

However, if we observe the regression results, we see that only the 

first lagged residual term is statistically significant, indicating, most 

probably, that the serial correlation is of first order. Rerunning the test 

for a first-order serial correlation the results are as shown in Table K2. 

This time the LM statistic is much higher, as well as the t statistic of 

the lagged residual term. So, the autocorrelation is definitely of first 

order. 
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Table K1 Results of Breusch-Godfrey LM Test (4
th

 order AC) 

 
 

Table K2 Results of Breusch-Godfrey LM Test (1
st
 order AC) 

 
 

Example for LM Test [for AR(1) Case] 

 

In this example, we show that for AR(1) case, the BG -LM test can be 

done using t-table values. This BG-LM test is known as Durbin’s M 

test. 

 

The following equations are estimated for the 1990.1-1993.12 period: 

 

(1) ˆ
tGTM 250.2 - 89.65 MPR t   R

2
 = 0.598  

 se   (240.92)   (33.59) 
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(2) ˆ
tu -48.65 - 2.82 MPR t + 2.942 1

ˆ
tu     

  se    (35.49)   (6.85)           (0.68) 

 

Test for the presence of first-order autocorrelation in (1) 

 

Solution  

 

H0: 1 =0 

HA: 1 0 

 

t=2.942/0.68=4.33 

 

t/2,T-k-1=t0.025, 46=2.021 t>ttable, so reject H0 at =0.05 level of 

significance. There is autocorrelation. 

 

E. Durbin’s h Test in the Presence of Lagged Dependent Variables 

 

We mentioned before in the assumptions of the DW test, that the DW 

test is not applicable when our regression model includes lagged 

dependent variables as explanatory variables. Therefore, if the model 

under examination has the form: 

 

0 1 1 2 2 1...t t t k tk t tY X X X Y u                (1) 

 

the DW test is no longer valid. Durbin (1970) devised a test statistic 

that can be used for such models, and this h statistic has the form: 

 

  
/

2 /

ˆ

1
ˆ2 1

DW T
h

T

 
  

 
 

 

where /T =number of observations in (1), (=T-1), and 2

ˆ
ˆ
 = estimated 

variance of the OLS estimated coefficient associated with lagged 

variable Yt-1. 
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For "large samples" the test statistic (h) has a standard normal 

distribution. Therefore, for a test of the null hypothesis of no 

autocorrelation against the 2-sided alternative of autocorrelated errors, 

at a 5% level, the decision rule is if -1.96<h<1.96 do not reject the 

null hypothesis. By applying this decision rule it can be seen that 

there is no evidence for autocorrelation in the residuals. As a 

cautionary note; users should consider that this test may not be 

accurate in "small samples". This test is not as powerful, in a 

statistical sense, as the Breusch–Godfrey LM test. 

 

Steps 

1. Estimate (1). Obtain ˆ
tu  and DW. Obtain the estimated variance of 

the OLS estimated coefficient associated with lagged variable Yt-1, 

i.e., 2

ˆ
ˆ
 . 

2. Compute 
/

2 /

ˆ

1
ˆ2 1

DW T
h

T

 
  

 
 

3. Test; 

 H0: =0 (no AC) 

 HA: 0 (AC) 

 

hN(0,1) asymptotically. So if the sample size is reasonably large and 

0.025 /21.96 ( )h Z Z   , we reject H0 at 0.05 level of significance so 

there is AC. 

Remarks 

 

a. It does not matter how many X variables or how many lagged 

values of Y are included in the regression model. To compute h, 

we need consider only the variance of the coefficient of lagged Yt-1 

b. The test is not applicable if ( 2 /

ˆ
ˆ T ) exceeds 1. In practice, however, 

this does not usually happen. 
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Example 

 

You are given time series data for the period 1977.1-1991.2 on the 

estimation of aggregate consumption by disposable income. 

 

(OLS)(1)  Ct=13.2+0.88Yt   R
2
=0.988  DW=1.11 

             (3.38)   (0.01) 

 

(OLS)(2)  Ct=5.08+0.64Ct-1+0.33Y, R
2
=0.993  DW=2.12 

         se   (3.00)   (0.10)       (0.09) 

 

and test the model (2)  for serial correlation  (take =0.05). 

 

Solution  

 

There is lagged dependent variable, so we can use Durbin-h test (or 

LM test). 

 

H0: =0 (no AC) 

HA: 0 (AC) 

 
/

2 /

ˆ

1
ˆ2 1

DW T
h

T

 
  

 
 

 

where /T =T–1, 2

ˆ
ˆ
 = estimated variance of Ct-1. 

 

h = 
2

57
( 0.06).

1 (0.10) (57)



 = 

57
( 0.06).

0.43
  = -0.69 

 

0.69<1.96 (=Z0.025)   Do not reject H0 at =0.05 level of 

significance. There is no autocorrelation.   
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VII. Correcting for Genuine (Pure) Autocorrelation 

 

Consider the following AR(1) process: 

 

(1)  0

1

k

t i ti t

i

Y X u 


                   
1t t tu u     

 

where 
t  satisfies all GM assumptions 

Then; 

(2) 0 1

1

k

t i ti t t

i

Y X u   



     

 

If  is known  GLS procedure will be applied. 

If  is unknown  EGLS procedure will be applied. 

 

A. GLS and EGSL Methods 

 

1. Generalized Least Squares (GLS) (ρ is known) 

 

Recall 

           

0

1

k

t i ti t

i

Y X u 


   ,  

 

then, 

 

1 0 1, 1

1

k

t i t i t

i

Y X u   



    

1 1 0 1,

1

k

t t i t i

i

u Y X   



               t=2…..T 
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Multiply both sides by   
 

1 1 0 1,

1

k

t t i t i

i

u Y X      



     

 

and put it in equation (2): 

 

(3) 0 1 0 1,

1 1

k k

t i ti t i t i t

i i

Y X Y X       

 

        

0

1 0 1,

1 1

(1 )

tt

k k

t t i ti i t i t

i i
XY

Y Y X X      


 

 

        

0 0 1,

1

.

ti

k

t t i ti t i t

i
X

Y X X X   



 





       

(4) 
0 0

1

.
k

t t i ti t

i

Y X X    



     t=2…..T 

where t white noise residual. There is no problem to apply OLS to 

model (4). 

 

Now we can apply OLS to the transformed model (4) and obtain GLS 

estimator (for equation 1) of our original model. 

 

Example  Suppose we know that  =0.7 

 

observation           tY                 1tY                    1t tY Y          

   t=1                     30                -                           - 

   t=2                     38                30                    38-(0.7).30 

   t=3                     45                38                    45-(0.7).38 

   t=4                     62                45                    62-(0.7).45 

    .                          .                  .                             . 

                 .                          .                  .                             . 

                  .                         .                  .                             . 
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Recall: GLS is nothing but OLS applied to the transformed model that 

satisfies the Gauss-Markov assumptions. 

 

As can be seen from the example, in this procedure we lose one 

observation because the first observation has no legged counterpart. 

This loss of one observation can make a substantial difference in the 

results particularly in small samples. In addition, without 

transforming the first observation, the error variance will not be 

homoscedastic (it can be shown). 

 

To avoid this loss of one observation, the first observation on Y and X 

is transformed as follows: 

 

2

1 1Y                       and                     
2

1 1 1X X     

  

This transformation is known as Prais-Winsten transformation. 

 

2. Estimated Generalized Least Squares (GLS) ( is unknown) 

 

The GLS procedure is difficult to implement since   is rarely known 

is practice. Therefore, we need to find ways of estimating . 

 

 

We have several possibilities: 

 

1) First-Difference Method 

2)   estimated from residuals 

3) Iterative methods to estimate   

       a) Cochrane-Orcutt (CO) iterative procedure 

       b) CO two-step procedure 

       c) Durbin two-step procedure 

       d) Hildreth-Lu search procedure 
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All of them estimate  and then apply transformation. Most common 

is CO iterative procedure. Eviews uses CO iterative procedure. One 

advantage of CO iterative method is that it can be used to estimate not 

only AR(1) scheme but also higher order autoregresive schemes, such 

as AR(2). 

 

B. AC Correction and Common Factor (COMFAC) Test 

 

Suppose that we have genuine (pure) auto correlation such as:  

 

(1)             0 1t t tY X u     

where           1t t tu u    

 

(1
’
)           0 1t tY X     1t tu    

 

Then we can write  

 

(2)         1 0 1 1 1t t tY X u       
 

Multiply both sides by  ; 

 

1 0 1 1 1t t tY X u         

                              

(3)       1 1 0 1 1t t tu Y X         
 

Putting (3) into (1’) yields; 

 

 

0 1t tY X   + 1 0 1 1t t tY X        

 

Rearranging we have  
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(4)      

2 3 41

0 1 1 1 1(1 )t t t t tY Y X X

  

              

which is (1,1)ARDL
6 

 

 (4’)    1 2 1 3 4 1t t t t tY Y X X           

 

with the restriction, 

 

4 1        or   4 2 3     

 

The presence of this implicit restriction provides us with an 

opportunity to perform a test of the validity of the model specification 

of genuine AC based on AR(1) scheme. This test is known as the 

“Common Factor test (COMFAC Test)”. 

 

The test helps us to discriminate between cases where DW statistic is 

low because the disturbance term is genuinely subject to a AR(1) 

process and cases where it is low for other reasons such as model 

misspecification etc. 

 

The usual F test of a restriction is not appropriate since the restriction 

4 2 3     is not linear. Instead we calculate the Likelihood Ratio 

(LR) statistic. 

                   .ln R

U

SSR
LR COMFAC T

SSR

 
  

 
 

 

RSSR SSR of Model 4
 

USSR SSR  of Model 4’ 

 

We can compare:   2 ( )pLR COMFAC    

                                     
6 ARDL(maximum lag of Y, maximum lag of X) 
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For our example, the COMFAC test is as follows: 

 

H0: 4 2 3 0     

HA: 4 2 3 0     

 

If   2

1 (0.05)LR COMFAC  RH0 of COMFAC restriction is valid. 

Hence the source of AC is not 1t t tu u   . Thus GLS or EGLS 

must not be applied to correct AC! 

 

If we have 2 variables in the original model; 

 

(5)   0 1 2t t t tY X Z u              where    1t t tu u    

              

Then we can write 

 

(5’)   0 1 2 1t t t t tY X Z u          

              

From (5) we can also write  

 

1 0 1 1 2 1 1t t t tY X Z u          

 

Multiplying both sides by   produces; 

                                                     

1 0 1 1 2 1 1t t t tY X Z u             

 

(6) 1 1 0 1 1 2 1t t t tu Y X Z             

 

Putting (6) into (5’) we get; 

                                                       

0 1 2 1 0 1 1 2 1t t t t t t tY X Z Y X Z                  
 

(7) 

2 3 4 5 61

0 1 1 2 1 1 2 1(1 )t t t t t t tY Y X Z X Z

    

                  
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with the restrictions  

 

5 1           or        5 2 3     

6 2           or         6 2 4     

 

 

(7’) 1 2 1 3 4 5 1 6 1t t t t t t tY Y X Z X Z                

 

To test for COMFAC restrictions we follow the following steps: 

 

(1) H0: 5 2 3 0     and  6 2 4 0     

        HA: 5 2 3 0    and   6 2 4 0     

 

(2) Run model (7) which is our restricted model and get its SSR as 

SSRR. Run model (7’) which is our unrestricted model and get 

its SSR as SSRU. 

 

(3) Calculate  

  

   .ln R

U

SSR
LM COMFAC T

SSR

 
  

 
 

and compare to 2

2 (0.05)  since  

 

  2 ( )pLM COMFAC    

 

        p number of COMFAC restrictions. Here p=2 

 

If   2

2 (0.05)LM COMFAC  RH0, so we do not use GLS or 

EGLS to fix AC since AR(1) model does not seem to be an 

adequate specification for AC. 

 

 If not rejected the coefficient of 1tY  may be interpreted as 

an estimate of  . 
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C. The Newey-West Method of Correcting the OLS Standard Errors  

 

Instead of using the EGLS methods, we can still use OLS but correct 

the standard errors for auto correlation by a procedure developed by 

Newey and West. This is an extension of White’s Heteroscedasticity-

consistent standard errors (HC Standard errors). 

 

The corrected Standard errors are known as HAC (heteroscedasticity 

and autocorrelation consistent) standard errors, or simply Newey-

West standard errors. 

 

Most modern computer packages now calculate the HAC standard 

errors. It is important to note that the HAC procedure is valid in large 

samples and may not be appropriate in small samples. 

 

Consequently, in large samples we have HAC standard errors so we 

do not have to worry about the EGLS transformation.  

 

Therefore, if a sample is reasonably large (T≥50) one should use the 

Newey-West standard errors not only in situations of autocorrelation 

but also in cases of heteroscedasticity since HAC standard errors can 

handle both. 

  

Example 

 

tY 32.7419+0.6704 tX  
se   (1.3940)           (0.0157) 

t     (23.4874)        (42.7813) 

 

R
2
=0.9765,  DW=0.1739 

 

The estimation results with HAC standard errors: 

 

tY 32.7419+0.6704 tX  
HAC se  (2.9162)    (0.0302) 

HAC t    (11.227)    (22.199) 

 

R
2
=0.9765,  DW=0.1739 
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Note that the HAC standard errors are much greater than the OLS 

standard errors and therefore the HAC t ratios are much smaller than 

the OLS t ratios. 

 

This shows that OLS had in fact underestimated the true standard 

errors. This can also be seen as a sign for autocorrelation and 

heteroscedasticity. But we do not need to worry about it since HAC 

standard errors have taken this into account in correcting OLS 

standard errors. 

 

D. OLS versus EGLS and HAC in Genuine Autocorrelation 

  

The practical problem facing the researcher is this: In the presence of 

autocorrelation, OLS estimators, although unbiased, consistent and 

asymptotically normally distributed, are not efficient. Therefore, the 

usual inference procedure based on the t, F and 2  tests is no longer 

appropriate. On the other hand, EGLS and HAC procedure estimators 

that are efficient, but the finite or small-sample, properties of these 

estimators are not certain. This means that in small samples, the 

EGLS and HAC might actually do worse than OLS. 

 

As a matter of fact, in a Monte Carlo study Griliches and Rao (1969) 

found that if the sample is relatively small (T=15-20) and the 

coefficient of autocorrelation, , is less than 0.3, OLS is as good or 

better than EGLS. Hence, one may use OLS in small samples in 

which the estimated  is less than 0.3. 
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VIII. Resolving Apparent (Impure) Autocorrelation 
and Dynamic Econometric Models  

 

A. Finite Distributed Lags 

 

For psychological, technological, and institutional reasons, a 

regressand may respond to a regressor(s) with a time lag. Regression 

models that take into account time lags are known as dynamic or 

lagged regression models (Gujarati). There are two types of lagged 

models: distributed-lag and autoregressive. If the regression model 

includes not only the current but also the lagged (past) values of the 

explanatory variables (the X’s), it is called a distributed-lag model. If 

the model includes one or more lagged values of the dependent 

variable among its explanatory variables, it is called an autoregressive 

model. Thus, 0 1 1 2 2t t t t tY X X X u          represents a 

distributed-lag model, whereas 1t t t tY X Y u        is an example 

of an autoregressive model.  

 

 

More generally we may write: 

 

0 1 1 2 2 ...t t t t q t q tY X X X X u                (1) 

 

which is a distributed-lag model with a finite lag of q time periods: it 

is called a finite distributed lag model of order q
7
. The coefficient β0 

is known as the short-run, or impact, multiplier because it gives the 

change in the mean value of Y following a unit change in X in the 

same time period. If the change in X is maintained at the same level 

thereafter, then, (β0 + β1) gives the change in (the mean value of) Y in 

the next period, (β0 + β1 + β2) in the following period, and so on. 

These partial sums are called interim, or intermediate, multipliers. 

Finally, after q periods we obtain 

 

                                     
7 It is called a finite distributed lag model of order q because it is assumed that after a finite number of periods q, 

changes in X no longer have an impact on Y. 
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0 1 20
...

q

s qs
     


       

 

which is known as the long-run, or total, distributed-lag multiplier, 

provided the sum β exists. The total multiplier is the final effect on Y 

of the sustained increase after q or more periods have elapsed. 

 

The mean lag is simply the weighted average of the lags, in which the 

lag s periods enters with weight s , or with relative weight 

0

s

q

ss






, 

thus: 

 

Mean lag=
0

0

q s

qs

ss

weight

s







 
 
 
 




= 0

0

q

ss

q

ss

s










 

 

Similarly the median lag is the number of periods required for the 

long-run adjustment to be one-half complete. 

 

A purely distributed-lag model can be estimated by OLS, but in that 

case there is the problem of multicollinearity since successive lagged 

values of a regressor tend to be correlated. As a result, some shortcut 

methods have been devised. These include the Koyck, the adaptive 

expectations, and partial adjustment mechanisms and Almon 

polynomial distributed-lag model. However we will not go into 

details of these methods here.  

 

On the other hand, autoregressiveness poses estimation challenges; if 

the lagged regressand (dependent variable) is correlated with the error 

term, OLS estimators of such models are not only biased but also are 

inconsistent
8
. 

                                     
8 Bias and inconsistency are the case with the Koyck and the adaptive expectations models; the partial 

adjustment model is different in that it can be consistently estimated by OLS despite the presence of the lagged 

regressand (G, p.702). To estimate the Koyck and adaptive expectations models consistently, the most popular 

method is the method of instrumental variable. The instrumental variable is a proxy variable for the lagged 

regressand but with the property that it is uncorrelated with the error term. An alternative to the lagged 

regression models just discussed is the Almon polynomial distributed-lag model, which avoids the estimation 
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Despite the estimation problems, which can be surmounted, the 

distributed and autoregressive models have proved extremely useful 

in empirical economics because they make the otherwise static 

economic theory a dynamic one by taking into account explicitly the 

role of time. Such models help us to distinguish between short- and 

long-run response of the dependent variable to a unit change in the 

value of the explanatory variable(s). Thus, for estimating short- and 

long-run price, income, substitution, and other elasticities these 

models have proved to be highly useful (G, p.703) 

 

1. Assumptions 

 

As generally the time-series variables are random, it is useful to 

revise the necessary assumptions under which we can consider the 

properties of least squares and other estimators. 

 

In distributed lag models due to their time series characteristics both Y 

and X are usually random. Consider the example of unemployment 

(Yt) and output growth (Xt). They are both random. They are 

observed at the same time; we do not know their values prior to 

‘‘sampling.’’ We do not ‘‘set’’ output growth and then observe the 

resulting level of unemployment.  

 

To accommodate this randomness we assume that the X’s are random 

and that tu  is independent of all X’s in the sample—past, current, and 

future. This assumption, in conjunction with the other multiple 

regression assumptions, is sufficient for the least squares estimator to 

be unbiased and to be best linear unbiased conditional on the X’s in 

the sample. With the added assumption of normally distributed error 

terms, our usual t and F tests have finite sample justification. 

Accordingly, the multiple regression assumptions
9
 can be modified 

                                                                                                                  
problems associated with the autoregressive models. The major problem with the Almon approach, however, is 

that one must prespecify both the lag length and the degree of the polynomial. There are both formal and 

informal methods of resolving the choice of the lag length and the degree of the polynomial. 
9 Remember that for multiple regression model of 0 1 2 2 ...t t t K tK tY X X X u          where t=1,…,T. 

1) ( ) 0tE u   
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for the distributed lag model as follows (assumptions of the 

distributed lag model): 

 

Consider 0 1 1 2 2 ...t t t t q t q tY X X X X u              where 

t=q+1,…,T. 

1) ( ) 0tE u   

2) 2( )tVar u   

3) ( , ) 0,t sCov u u t s   

4) Y and X are stationary random variables, and tu  is independent 

of current, past and future values of X. 

5) 2(0, )tu N   (required in finite samples for hypothesis testing) 

 

2. Example (Okun’s Law) 

 

To illustrate and expand on the various distributed lag concepts, we 

introduce an economic model known as Okun’s Law. In this model 

the change in the unemployment rate from one period to the next 

depends on the rate of growth of output in the economy: 

 

1 ( )t t t NU U G G         (2) 

 

where tU  is the unemployment rate in period t, tG  is the growth rate 

of output in period t, and NG  is the ‘‘normal’’ growth rate, which we 

assume is constant over time
10

.  

 

The parameter   is positive, implying that when the growth of output 

is above the normal rate, unemployment falls; a growth rate below the 

                                                                                                                  
2) 2( )tVar u   

3) ( , ) 0,t sCov u u t s   

4) The values of each tkX are not random (fixed in repeated sampling). 

5) 2(0, )tu N   (required in finite samples for hypothesis testing) 

 
10 The normal growth rate NG  is the rate of output growth needed to maintain a constant unemployment rate. It 

is equal to the sum of labor force growth and labor productivity growth. 
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normal rate leads to an increase in unemployment. We expect 0< <1, 

reflecting that output growth leads to less than one-to-one adjustments 

in unemployment. 

 

Denoting the change in unemployment by 1t t t tDU U U U     , 

setting 0   , NG   and including an error term then yields: 

 

0t t tDU G u         (3) 

 

Recognizing that changes in output are likely to have a distributed-lag 

effect on unemployment—not all of the effect will take place 

instantaneously—we expand (3) to include lags of tG : 

 

0 1 1 2 2 ...t t t t q t q tDU G G G G u                (4) 

 

To estimate this relationship we use quarterly U.S. data on 

unemployment and the percentage change in gross domestic product 

(GDP) from quarter 2, 1985, to quarter 3, 2009. Output growth is 

defined as 1

1

.100t t
t

t

GDP GDP
G

GDP






  

 

These data are stored in the okun.rar file that can be reached from 

online.metu.edu.tr service of the ECON302. 

 

 
 

The OLS estimation results are as follows: 
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Least squares estimates of the coefficients and related statistics for are 

reported in table above for lag lengths q=2 and q=3. Note that all 

coefficients of G and its lags have the expected negative sign and are 

significantly different from zero at a 5% significance level, with the 

exception of that for 3tG  when q=3. A variety of measures are 

available for choosing q. In this case we drop 3tG   and settle on a 

model of order 2 because 3  is insignificant and has the wrong sign, 

and 0 ; 1 , and 2  all have the expected negative signs and are 

significantly different from zero. The information criteria AIC and SC 

are another set of measures that can be used for assessing lag length. 

 

B. Autoregressive Distributed Lag Models (ARDL Models) 

 

An autoregressive distributed lag (ARDL) model is one that contains 

both lagged Xt’s and lagged Yt’s. In its general form, with p lags of Y 

and q lags of X, an ARDL(p, q) model can be written as 

 

1 1 0 1 1... ...t t p t p t t q t q tY Y Y X X X u                   (5) 
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In the context of the above equation, the assumption 4 introduced in 

previous section is no longer valid since it says that tu  is not 

correlated with current, past, and future values of 1tY  ; tX  and t qX  . 

Since tY  is a future value of 1tY   and tY  depends directly on tu , the 

assumption will be violated. We can, however, replace it with a 

weaker, more tenable assumption—namely, that tu  is uncorrelated 

with current and past values of the right-hand-side variables. Under 

this assumption, the OLS estimator is no longer unbiased, but it does 

have the desirable large sample property of consistency, and, if the 

errors are normally distributed, it is best in a large sample sense. 

Thus, we replace the assumption 4 as we said: 

 

Consider 0 1 2 2 ...t t t K tK tY X X X u          where some of 

the tKX  may be lagged values of Y; 

1) ( ) 0tE u   

2) 2( )tVar u   

3) ( , ) 0,t sCov u u t s   

4) Y and X are stationary random variables, and ut is uncorrelated 

with all Xtk and their past values. 

5) 2(0, )tu N   (required in finite samples for hypothesis testing) 

 

The ARDL model has several advantages. It captures dynamic effects 

from lagged X’s and lagged Y’s, and by including a sufficient number 

of lags of Y and X, we can eliminate serial correlation in the errors. 

Moreover, an ARDL model can be transformed into one with only 

lagged X’s which go back into the infinite past: 

 

0 1 1 2 2 3 3 ...t t t t t tY X X X X u                (6) 

 

0t s t s ts
Y X u 




    

 

Because it does not have a finite cut off point, this model is called an 

infinite distributed lag model. It contrasts with the finite distributed 

lag model, where the effect of the lagged x’s was assumed to cut off 
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to zero after q lags. Like before, the parameter s  is the distributed 

lag weight or the s-period delay multiplier showing the effect of a 

change in tX  on t sY  . The total or long-run multiplier showing the 

long-run effect of a sustained change in Xt is 
0 ss




 . For the 

transformation from (5) to (6) to be valid, the effect of a change must 

gradually die out. Thus, the values of s  for large s will be small and 

decreasing, a property that is necessary for the infinite sum 
0 ss




  to 

be finite.  

 

OLS is an appropriate estimation technique under assumptions of the 

previous section, but the main concern for estimation is choice of the 

lag lengths p and q. 

 

There are a number of different criteria for choosing p and q. Because 

they all do not necessarily lead to the same choice, there is a degree of 

subjective judgment that must be used. Four possible criteria are 

 

1) Has serial correlation in the errors been eliminated? If not, then 

least squares will be biased in small and large samples. It is 

important to include sufficient lags, especially of Y, to ensure that 

serial correlation does not remain. It can be checked using the 

correlogram or Lagrange multiplier tests. 

 

2) Are the signs and magnitudes of the estimates consistent with our 

expectations from economic theory? Estimates which are poor in 

this sense may be a consequence of poor choices for p and q, but 

they could also be symptomatic of a more general modeling 

problem. 

 

3) Are the estimates significantly different from zero, particularly 

those at the longest lags? 

 

4) What values for p and q minimize information criteria such as the 

AIC and SBC? 
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1. Example (Phillips Curve) 
 

Model 11: OLS, using observations 1987:2-2009:3 (T = 90) 

Dependent variable: inf 

 

  Coefficient Std. Error t-ratio p-value  

const 0.777621 0.0658249 11.8135 <0.00001 *** 

d_u -0.527864 0.229405 -2.3010 0.02375 ** 

 

Mean dependent var  0.791111  S.D. dependent var  0.636819 

Sum squared resid  34.04454  S.E. of regression  0.621989 

R-squared  0.056752  Adjusted R-squared  0.046033 

F(1, 88)  5.294666  P-value(F)  0.023754 

Log-likelihood -83.95817  Akaike criterion  171.9163 

Schwarz criterion  176.9160  Hannan-Quinn  173.9325 

rho  0.549882  Durbin-Watson  0.887289 

 

Corelogram: 

 
Residual autocorrelation function 

 

  LAG      ACF          PACF         Q-stat. [p-value] 

 

    1   0.5487  ***   0.5487 ***     28.0056  [0.000] 

    2   0.4557  ***   0.2213 **      47.5475  [0.000] 

    3   0.4332  ***   0.1761 *       65.4091  [0.000] 

    4   0.4205  ***   0.1383         82.4327  [0.000] 

    5   0.3390  ***  -0.0003         93.6296  [0.000] 

    6   0.2710  **   -0.0338        100.8674  [0.000] 

    7   0.1912  *    -0.0850        104.5151  [0.000] 

    8   0.2507  **    0.1155        110.8611  [0.000] 

    9   0.1534       -0.0784        113.2669  [0.000] 

   10   0.0500       -0.1252        113.5256  [0.000] 

   11  -0.0157       -0.1076        113.5516  [0.000] 

   12  -0.0132       -0.0218        113.5700  [0.000] 
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There is AC in this model. Let us try ARDL model for estimation. 
 

 
OLS, using observations 1988:2-2009:3 (T = 86) 

Dependent variable: inf 

 

  Coefficient Std. Error t-ratio p-value  

const 0.130792 0.106368 1.2296 0.22264  

d_u -0.811945 0.269261 -3.0155 0.00349 *** 

d_u_1 0.145599 0.289896 0.5022 0.61695  

d_u_2 0.0349051 0.317024 0.1101 0.91262  

d_u_3 0.0409242 0.303401 0.1349 0.89306  

d_u_4 -0.327582 0.287826 -1.1381 0.25864  

inf_1 0.245415 0.110832 2.2143 0.02981 ** 

inf_2 0.103233 0.114222 0.9038 0.36896  

inf_3 0.166993 0.114691 1.4560 0.14950  

inf_4 0.242344 0.116723 2.0762 0.04125 ** 

 

Mean dependent var  0.748837  S.D. dependent var  0.619059 

Sum squared resid  17.82454  S.E. of regression  0.484286 

R-squared  0.452813  Adjusted R-squared  0.388015 

F(9, 76)  6.988033  P-value(F)  2.78e-07 

Log-likelihood -54.35655  Akaike criterion  128.7131 

Schwarz criterion  153.2566  Hannan-Quinn  138.5907 

rho -0.042260  Durbin-Watson  2.064445 
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OLS, using observations 1988:1-2009:3 (T = 87) 

Dependent variable: inf 

 

  Coefficient Std. Error t-ratio p-value  

const 0.1001 0.0982599 1.0187 0.31137  

d_u -0.790172 0.188533 -4.1912 0.00007 *** 

inf_1 0.23544 0.101556 2.3183 0.02295 ** 

inf_2 0.121328 0.103757 1.1693 0.24569  

inf_3 0.16769 0.10496 1.5977 0.11401  

inf_4 0.281916 0.10138 2.7808 0.00674 *** 

 

Mean dependent var  0.760920  S.D. dependent var  0.625682 

Sum squared resid  18.23336  S.E. of regression  0.474450 

R-squared  0.458422  Adjusted R-squared  0.424992 

F(5, 81)  13.71262  P-value(F)  1.07e-09 

Log-likelihood -55.47215  Akaike criterion  122.9443 

Schwarz criterion  137.7397  Hannan-Quinn  128.9020 

rho -0.032772  Durbin's h -0.903935 

 

 

AC test: 

 
Breusch-Godfrey test for autocorrelation up to order 4 

OLS, using observations 1988:1-2009:3 (T = 87) 

Dependent variable: uhat 

 

             coefficient   std. error   t-ratio    p-value 

  -------------------------------------------------------- 

  const      -0.109089      0.112161    -0.9726    0.3338  

  d_u        -0.0178808     0.214627    -0.08331   0.9338  

  inf_1      -0.135065      0.268527    -0.5030    0.6164  

  inf_2       0.109993      0.289074     0.3805    0.7046  

  inf_3      -0.168853      0.286317    -0.5897    0.5571  

  inf_4       0.319178      0.250648     1.273     0.2067  

  uhat_1      0.0840957     0.284311     0.2958    0.7682  

  uhat_2     -0.191709      0.285707    -0.6710    0.5042  

  uhat_3      0.0763031     0.279820     0.2727    0.7858  

  uhat_4     -0.458110      0.236134    -1.940     0.0560  * 

 

  Unadjusted R-squared = 0.077256 

 

Test statistic: LMF = 1.611691, 

with p-value = P(F(4,77) > 1.61169) = 0.18 

 

Alternative statistic: TR^2 = 6.721272, 

with p-value = P(Chi-square(4) > 6.72127) = 0.151 

 

Ljung-Box Q' = 3.05947, 

with p-value = P(Chi-square(4) > 3.05947) = 0.548 

 

Result: NO AC 
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Residual autocorrelation function 

 

  LAG      ACF          PACF         Q-stat. [p-value] 

 

    1  -0.0322       -0.0322          0.0934  [0.760] 

    2  -0.0764       -0.0775          0.6245  [0.732] 

    3  -0.0555       -0.0611          0.9086  [0.823] 

    4  -0.1518       -0.1638          3.0595  [0.548] 

    5   0.0224       -0.0007          3.1070  [0.683] 

    6   0.0411        0.0123          3.2685  [0.774] 

    7  -0.0338       -0.0504          3.3793  [0.848] 

    8   0.1494        0.1320          5.5664  [0.696] 

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  1  2  3  4  5  6  7  8  9

lag

Residual ACF

+- 1.96/T^0.5

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  1  2  3  4  5  6  7  8  9

lag

Residual PACF

+- 1.96/T^0.5

 
Result: NO AC 

 
 

ARDL(4,0) is pointed out by AIC and SBC. 
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2. Example (Okun’s Law) 

 
 

Model 1: OLS, using observations 1985:3-2009:3 (T = 97) 

Dependent variable: d_u 

 

  Coefficient Std. Error t-ratio p-value  

const 0.421338 0.0460029 9.1590 <0.00001 *** 

g -0.311801 0.0321719 -9.6917 <0.00001 *** 

 

Mean dependent var  0.023711  S.D. dependent var  0.287508 

Sum squared resid  3.990212  S.E. of regression  0.204944 

R-squared  0.497167  Adjusted R-squared  0.491874 

F(1, 95)  93.92957  P-value(F)  7.53e-16 

Log-likelihood  17.11999  Akaike criterion -30.23998 

Schwarz criterion -25.09056  Hannan-Quinn -28.15781 

rho  0.252546  Durbin-Watson  1.490251 

     

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  2  4  6  8  10  12

lag

Residual ACF

+- 1.96/T^0.5

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  2  4  6  8  10  12

lag

Residual PACF

+- 1.96/T^0.5
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Breusch-Godfrey test for autocorrelation up to order 4 

OLS, using observations 1985:2-2009:3 (T = 98) 

Dependent variable: uhat 

 

             coefficient   std. error   t-ratio   p-value 

  ------------------------------------------------------- 

  const      -0.0444271    0.0458515    -0.9689   0.3351  

  g           0.0377440    0.0327434     1.153    0.2520  

  uhat_1      0.228771     0.104912      2.181    0.0318  ** 

  uhat_2      0.108799     0.111587      0.9750   0.3321  

  uhat_3      0.213257     0.114245      1.867    0.0651  * 

  uhat_4     -0.0164596    0.113101     -0.1455   0.8846  

 

  Unadjusted R-squared = 0.114500 

 

Test statistic: LMF = 2.974013, 

with p-value = P(F(4,92) > 2.97401) = 0.0233 

 

Alternative statistic: TR^2 = 11.220956, 

with p-value = P(Chi-square(4) > 11.221) = 0.0242 

 

Ljung-Box Q' = 13.0098, 

with p-value = P(Chi-square(4) > 13.0098) = 0.0112 

 

There is AC in the model. Let us try ARDL by starting from 

ARDL(4,4). 

 
 

Model 2: OLS, using observations 1986:3-2009:3 (T = 93) 

Dependent variable: d_u 

 

  Coefficient Std. Error t-ratio p-value  

const 0.320122 0.105019 3.0482 0.00309 *** 

g -0.167614 0.0326717 -5.1302 <0.00001 *** 

g_1 -0.0993119 0.0384564 -2.5825 0.01156 ** 

g_2 -0.00996099 0.0393811 -0.2529 0.80094  

g_3 0.0675639 0.0401257 1.6838 0.09598 * 

g_4 -0.032178 0.0417702 -0.7704 0.44328  

d_u_1 0.347286 0.112357 3.0909 0.00272 *** 

d_u_2 0.0812942 0.121125 0.6712 0.50398  

d_u_3 0.177623 0.121783 1.4585 0.14847  

d_u_4 -0.206892 0.110192 -1.8776 0.06395 * 

 

Mean dependent var  0.025806  S.D. dependent var  0.291884 

Sum squared resid  2.203405  S.E. of regression  0.162933 

R-squared  0.718884  Adjusted R-squared  0.688402 

F(9, 83)  23.58353  P-value(F)  2.08e-19 

Log-likelihood  42.06941  Akaike criterion -64.13881 

Schwarz criterion -38.81282  Hannan-Quinn -53.91290 

rho  0.037408  Durbin-Watson  1.852595 
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Model 3: OLS, using observations 1986:3-2009:3 (T = 93) 

Dependent variable: d_u 

 

  Coefficient Std. Error t-ratio p-value  

const 0.283362 0.0933251 3.0363 0.00319 *** 

g -0.170854 0.0323213 -5.2861 <0.00001 *** 

g_1 -0.0952262 0.0379967 -2.5062 0.01413 ** 

g_2 -0.0144314 0.0388568 -0.3714 0.71128  

g_3 0.0664671 0.0400033 1.6615 0.10033  

d_u_1 0.336489 0.11121 3.0257 0.00329 *** 

d_u_2 0.0857541 0.120693 0.7105 0.47935  

d_u_3 0.196722 0.118944 1.6539 0.10188  

d_u_4 -0.180828 0.104615 -1.7285 0.08757 * 

 

Mean dependent var  0.025806  S.D. dependent var  0.291884 

Sum squared resid  2.219160  S.E. of regression  0.162538 

R-squared  0.716874  Adjusted R-squared  0.689910 

F(8, 84)  26.58597  P-value(F)  5.17e-20 

Log-likelihood  41.73812  Akaike criterion -65.47623 

Schwarz criterion -42.68284  Hannan-Quinn -56.27291 

rho  0.050136  Durbin-Watson  1.826062 

 

 
Model 4: OLS, using observations 1986:3-2009:3 (T = 93) 

Dependent variable: d_u 

 

  Coefficient Std. Error t-ratio p-value  

const 0.375684 0.075754 4.9593 <0.00001 *** 

g -0.182942 0.0318165 -5.7499 <0.00001 *** 

g_1 -0.0887159 0.0381835 -2.3234 0.02255 ** 

g_2 -0.0121405 0.0392325 -0.3095 0.75774  

d_u_1 0.321584 0.111989 2.8716 0.00516 *** 

d_u_2 0.0397725 0.118688 0.3351 0.73837  

d_u_3 0.139566 0.115034 1.2133 0.22839  

d_u_4 -0.1753 0.105639 -1.6594 0.10072  

 

Mean dependent var  0.025806  S.D. dependent var  0.291884 

Sum squared resid  2.292094  S.E. of regression  0.164213 

R-squared  0.707569  Adjusted R-squared  0.683486 

F(7, 85)  29.38097  P-value(F)  3.42e-20 

Log-likelihood  40.23444  Akaike criterion -64.46888 

Schwarz criterion -44.20808  Hannan-Quinn -56.28815 

rho  0.038560  Durbin-Watson  1.834593 
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Model 5: OLS, using observations 1986:3-2009:3 (T = 93) 

Dependent variable: d_u 

 

  Coefficient Std. Error t-ratio p-value  

const 0.361054 0.058877 6.1323 <0.00001 *** 

g -0.183488 0.0316 -5.8066 <0.00001 *** 

g_1 -0.0892011 0.0379502 -2.3505 0.02104 ** 

d_u_1 0.329875 0.108164 3.0498 0.00304 *** 

d_u_2 0.0518018 0.11155 0.4644 0.64355  

d_u_3 0.137002 0.114131 1.2004 0.23328  

d_u_4 -0.171953 0.10453 -1.6450 0.10362  

 

Mean dependent var  0.025806  S.D. dependent var  0.291884 

Sum squared resid  2.294676  S.E. of regression  0.163347 

R-squared  0.707239  Adjusted R-squared  0.686814 

F(6, 86)  34.62591  P-value(F)  5.79e-21 

Log-likelihood  40.18208  Akaike criterion -66.36416 

Schwarz criterion -48.63597  Hannan-Quinn -59.20602 

rho  0.023259  Durbin-Watson  1.863929 

 
 

Model 6: OLS, using observations 1985:4-2009:3 (T = 96) 

Dependent variable: d_u 

 

  Coefficient Std. Error t-ratio p-value  

const 0.37801 0.0578398 6.5355 <0.00001 *** 

g -0.184084 0.0306984 -5.9965 <0.00001 *** 

g_1 -0.0991552 0.0368244 -2.6926 0.00842 *** 

d_u_1 0.350116 0.084573 4.1398 0.00008 *** 

 

Mean dependent var  0.025000  S.D. dependent var  0.288736 

Sum squared resid  2.422724  S.E. of regression  0.162277 

R-squared  0.694101  Adjusted R-squared  0.684126 

F(3, 92)  69.58413  P-value(F)  1.40e-23 

Log-likelihood  40.39577  Akaike criterion -72.79155 

Schwarz criterion -62.53415  Hannan-Quinn -68.64534 

rho -0.024372  Durbin's h -0.419594 
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Breusch-Godfrey test for autocorrelation up to order 4 

OLS, using observations 1985:4-2009:3 (T = 96) 

Dependent variable: uhat 

 

             coefficient   std. error   t-ratio   p-value 

  ------------------------------------------------------- 

  const      -0.0404068    0.0796285    -0.5074   0.6131  

  g           0.00724623   0.0310951     0.2330   0.8163  

  g_1         0.0235344    0.0524849     0.4484   0.6550  

  d_u_1       0.0697011    0.160284      0.4349   0.6647  

  uhat_1     -0.0806161    0.197649     -0.4079   0.6844  

  uhat_2      0.0460614    0.117952      0.3905   0.6971  

  uhat_3      0.200825     0.112315      1.788    0.0772  * 

  uhat_4     -0.170182     0.114794     -1.483    0.1418  

 

  Unadjusted R-squared = 0.063965 

 

Test statistic: LMF = 1.503393, 

with p-value = P(F(4,88) > 1.50339) = 0.208 

 

Alternative statistic: TR^2 = 6.140635, 

with p-value = P(Chi-square(4) > 6.14064) = 0.189 

 

Ljung-Box Q' = 5.53979, 

with p-value = P(Chi-square(4) > 5.53979) = 0.236 

 

So no AC! ARDL(1,1) is chosen. 
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IX. Autoregressive Conditional Heteroscedasticity 
(ARCH) 

 

With time series data, it is possible for serial correlation to ocur in the 

variance of the disturbance rather than in the disturbance itself. 

 

A “large” disturbance in one period, resulting in an unusual value for 

Y in that period, is likely to result in greater uncertainty (which is 

measured by 2 ) in the next period. 

 

We can capture this possibility by making 2  vary with the 

disturbance in the previous period: 

           

(1)         2 2 2

1t tu      

 

Equation (1) is known as a first-order autoregressive conditional 

heteroscedasticity (ARCH) process. 

 

Many studies, particularly those involving speculative prices, have 

encountered ARCH effects, and it is important to be aware of such 

possibilities. 

 

The p
th

-order ARCH process  ( )ARCH p  can be written as: 

 

                 2 2 2 2 2

1 1 2 2 ....t t t p t pu u u            

 

Testing for ARCH(p) 

 

Consider the model 

 

(X) 
0

1

k

t i ti t

i

Y X u 


                   where   t=1…..T 

 

Steps: 
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1. Estimate model (X) by OLS and obtain residuals tu  

2. Estimate the following model by OLS and get R
2
 

 
2 2 2 2

0 1 1 2 2 ...t t t p t p tu u u u e                      where   t=1,…,T-p 

 

and calculate  ( )LM ARCH p  statistic. 

 

 ( )LM ARCH p =T’.R
2
 

 

where T’=T-p 

 

3. Test  

 

Ho= 1 2 .... 0p       

HA= at least one 0i   

 

If  ( )LM ARCH p 2 ( )p    RH0. So there is ARCH effects! 

 

 If ARCH effects were believed to be present, then 

estimation would have to be by Maximum Likelihood (ML) 

not OLS! 

 

Appendix 1 Cobweb Theorem 

 

The Cobweb Theorem was developed by Henry Schultz, Jan 

Tingerman and Arthur Hanai in 1930’s. However the name Cobweb 

was first coined by Nicholas Kaldor in 1934. The Cobweb 

phenomenon is explained below by a figure taken from Chauhan 

(2009, p.60). 
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Appendix 2 GSL Versus OLS 

 

Suppose that the disturbances are autocorrelated, but this fact is 

ignored and the coefficients of the model are estimated by OLS and 

the usual t and F tests are carried out. What are the consequences of 

such a practice? 

 

Our true model is 

 

(1) Yt= 0 +
1

k

i

i




 Xti +ut             t=1…T 

 

where ( ) 0tE u   and  2( )tVar u   
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(2) Cov(ut,us) = E(utus) = σts 0 for  t s, while we “falsely” estimate 

(1) under the assumption that Cov(ut,us) =0 for t s. 

 

Recall from your ECON301 lectures that the OLS estimator can be 

written as: 

 

(3)                                   i = i +
1

T

ti t

t

a u


  

where  
2

ˆ

ˆ
ti

ti

ti

v
a

v

  

where ˆtiv  being the residuals from the regression 

of the Xti on the remaining explanatory variables. 

 

 

The variance of i  is 

                                                                   Var( i ) = E
2

( )i iE     

 

Since ( )i iE   , we have: 

                          
2

( )i i iVar E       

 

From (3) we can write as usual : 

 

2

1

( )
T

i ti t

t

Var E a u


 
  

 
  

Expanding yields: 

 
2 2 2 2 2 2 2 2

1 1 2 2 3 3

1 1 2 2 2 2 3 3 1 1

( ) ......

2 2 ..... 2 .... 2

i i i i Ti T

i i i i T i T Ti T Ti T Si S
T S

Var E a u a u a u a u

a u a u a u a u a u a u a u a u



 


    


     



 

2 2

1, 1

1

( ) ( ) 2 ( )
T

i ti t ti t i t t

t

Var a E u a a E u u  



    

2 2

1, 1( ) 2 ( )i ti ti t i t tVar a a a E u u       
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2 2

1 1

( ) 2 ( )

ts

T T

i ti ti si t s

t s
t s

Var a a a E u u



 
 


    

 (4)   

2

2 2( ) 2

i

i ti ti si ts

t s
t s

Var a a a




  



          

 

If we ignore ( )t s tsE u u   we will falsely have: 

 

 
2 2( )F

i tiVar a    

 

If we use 

2

2

1

tu

T k
 

 


, then we will estimate 2 2( )F

i tiVar a    

 

or 

 

(5)    2 2 2

İ

F

tia


    

 

If we take expectation of both sides of (5), we can not obtain (4) even 

if 2 2( )E   holds; 

 

 
2 2 2( )

i

F

tiE E a


   
    

 

2 2 2

i

F

tiE a


   
    

 

 

which is obviously different from  2 2 2ti ti si ts

t s
t s

a a a 



   by 

2 ti si ts

t s
t s

a a 



 . Hence 2

İ

F


 is a biased estimator of 2

İ
 . This bias 

would further increase when 2  is not an unbiased estimator of 2  : 
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i.e. when  2 2E      . In fact, 2  is indeed not an unbiased 

estimator of 2  under autocorrelation! 

 

 

Under autocorrelation, 2  may be underestimated since 
2

2
ˆ

1

tu

T k
 

 


 has 

2ˆ
tu in the numerator. For example, in negative 

autocorrelation situation shown in the figure below, it can be seen that 
ˆ 'tu s  are not good representatives of tu ’s and they are generally 

smaller. 

 
 

Hence, we may conclude that there are two sources of 

underestimation of the variances of the OLS estimators ( 2

i
 ) 

                                                                                                                              

(1) the term of 2 ti si ts

t s
t s

a a 



  is ignored 

(2) the estimate of 2  in most cases has a downward bias due to 

positive autocorrelation in the tu ’s. 

 

Now suppose that we use OLS estimators i  but use the variance 

formula given by (4) 
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             2 2( ) 2i ti ti si ts

t s
t s

Var a a a  



    

 

Is this the solution of autocorrelation problem? Unfortunately not, 

even if we use (4) and even if we know  2 , there is stil a problem of 

using OLS under autocorelation. It can be shown that OLS estimators 

are stil unbiased but they have no longer minimum variance. 

 

In other words they are not efficient. It is possible to find another 

estimator with a smaller variance compared to OLS estimators. This 

estimator is GLS estimator:  ˆ
i  

 
 

 

Since OLS does not have minimum varience, the confidence 

imntervals derived from there are likely to be wider than those based 

on the GLS estimator. The implication of this finding for hypothesis 

testing is clear:  

 

We are likely to declare  a  coefficient  statistically  insignificant  

even  though in fact  (based on correct GLS procedure) it may 

be. In other words, instead of “rejecting” null hypothesis we can 

conclude “do not reject” null hypothesis. 
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This can be seen from the figure. The point  given for any estimate of 

i  in figure will be declared as insignificant if we calculate OLS 

confidence intervals using OLS estimates and variences. But if we 

were to use the (correct) GLS confidence interval, we could 

reject 0 : 0iH   since the point (estimate) lies in the region of rejection 

for GLS estimator distribution. 

 

The message is: to establish confidence intervals and to test 

hypothesis, one should use GLS not OLS even though the estimators 

derived from OLS are unbiased and consisent. 

 

Summary: Results of OLS Estimation Disregarding 

Autocorrelation 

 

1) the residual variance    

2

2
ˆ

1

tu

T k
 

 


 is likely to underestimate the 

true 2 . 

2) As a result, we are likely to overestimate 2R  (and we can be very 

happy, although we must not be!) 

3) Even if 2  is not underestimated, ( )F

iVar   may under estimate  

( )iVar   even though  ( )iVar   is also inefficient compared to 

ˆ( )GLS

iVar   

where 

                          2 2( )F

i tiVar a    

                          
2 2( ) 2i ti ti si ts

t s
t s

Var a a a  



  
 

4) Therefore, the usual t and F tests of significance are no longer 

valid, and if applied, are likely to give seriously misleading 

conclusions about the statistical significance of the estimated 

regression coefficients. 
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