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I. Stationarity 

 

A key concept of time series processes is stationarity. A time series is 

(covariance) stationary when it has the following 3 characteristics: 

 

1) exhibits mean reversion in that it fluctuates around a constant 

long-run mean; 

2) has a finite variance that is time-invariant; 

3) has a theoretical correlogram that diminishes as the lag length 

increases. 

 

In its simplest terms a time series tY  is said to be stationary if: 

 

(a) ( )tE Y =constant for all t; 

(b) ( )tVar Y =constant for all t; and 

(c) ( , )t t kCov Y Y  =constant for all t and all 0k   

 

or if its mean, variance and covariance remain constant over time. 
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In the literature, a covariance stationary process is also referred to as 

a weakly stationary, second-order stationary or wide-sense stationary 

process. Note that a strongly stationary process need not have a finite 

mean and/or variance. 

 

In this course, we will only consider covariance stationary series so 

that there is no ambiguity in using the terms stationary and covariance 

stationary interchangeably.  

 

The ( )tE Y , ( )tVar Y  and ( , )t t kCov Y Y   would remain the same whether 

the observations for the time series were, for example, from 1975 to 

1985 or from 1985 to 1995. 

 

Stationarity is important because, if the series is non-stationary, all the 

typical results of the classical regression analysis are not valid.  

 

Regressions with non-stationary series may have no meaning and 

therefore called “spurious”.  

 

Shocks to a stationary time series are necessarily temporary; over 

time, the effects of the shock will dissipate and the series will revert to 

its long-run mean level.  

 

As such, long-term forecasts of a stationary series will converge to the 

unconditional mean of the series.  

 

A time series is non-stationary if it fails to satisfy any part of the 

above conditions (a) to (c). 

 

For example, the time series trending consistently upwards or 

downwards (such as those illustrated below) are almost certain not to 

satisfy ( )tE Y =constant for all t condition since their mean values 

appear to change over time.  
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In addition, however, the time series illustrated below is also likely to 

be non-stationary since, although its mean may be constant, its 

variance appears to be increasing over time.  

 

 
 

In this lecture, we consider models of non-stationary time series, i.e., 

series  tY  whose first and second moments (means and covariances) 

are functions of time.  These involve all series with a trend. Trends, 

which can be either deterministic (like a time trend) or stochastic, will 

obviously produce non-stationarities.  

 

An example of nonstationary stochastic process is where the mean of 

the process is itself a specific function of time: deterministic trend 

situation. This can be described as: 

 

0 0 0 0t tY Y a t u a     and tu  is a white noise. 

 

It is called a deterministic trend because a fixed value 0a  is added for 

each time t.  
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Another example of nonstationary stochastic process is where a series 

may be drift slowly upwards or downwards purely as a result of the 

effects of stochastic (or random) shocks: stochastic trend situation.  

 

A process involving stochastic trend can be written as: 

 

0 1

T

t tt
Y Y u


   

 

Here 
1

T

tt
u

  is the sum of past stochastic terms. Hence 
1

T

tt
u

  is 

often called the stochastic trend.  

 

This term arises because a stochastic component tu  is added for each 

time t, and because it causes the time series to trend in unpredictable 

directions. If the variable tY  is subjected to a sequence of positive 

shocks ( tu >0) followed by a sequence of negative shocks ( tu <0), it 

will have the appearance of wandering upward, then downward. 

 

 
Figure X Stochastic and deterministic trend (Cheremza) 
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(Stock and Watson, p.588) 

 

A deterministic trend is a nonrandom function of time.  For example, 

a deterministic trend might be linear in time: if inflation had a 

deterministic linear trend so that it increased by 1.5 percentage point 

per quarter, this trend could be written as 1.5t, where t is measured in 

quarters. In contrast, a stochastic trend is random and varies over 

time. For example a stochastic trend in inflation might exhibit a 

prolonged period of increase followed by a prolonged period of 

decrease (Figure 14.1, p.561) 

 

Like many econometricians, we think it is more appropriate to model 

economic time series a having stochastic trends rather than 

deterministic trends.  

 

Economics is a complicated stuff. It is hard to reconcile the 

predictability implied by a deterministic trend with the complications 

and surprises faced year after year by workers, businesses and 

governments. For example, although US inflation rose through the 

1970s, it was neither destined to rise forever nor destined to fall again. 

Rather, the slow rise of inflation is now understood to have occurred 

because of bad luck and monetary policy mistakes, and its taming was 

in large part a consequence of tough decisions made by the Board of 

Governors of the Federal Reserve. Similarly, the $/£ exchange rate 

trended down from 1972 to 1985 and subsequently   drifted up, but 

these movements too were the consequences of complex economic 

forces; because these forces change unpredictably, these trends are 

usually thought of as having a large unpredictable, or random 

component.  

 

Below we present a simplest model of a stochastic trend: the pure 

random walk model. 

 

A. The Random Walk Model  
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The simplest model of a variable with a stochastic trend is the random 

walk.  

 

 

A time series tY  is said to follow a random walk if the change in tY  is 

independent and identically distributed (iid): 

 

1t t tY Y u          (1) 

 

where tu  is independent and identically distributed (iid). We will, 

however, use the term random walk more generally to refer to a time 

series that follows Equation (1) where tu  has a conditional mean zero: 

 

1 2( | , ,...) 0t t tE u Y Y    

 

The basic idea of a random walk is that the value of the series 

tomorrow is its value today plus an unpredictable change. Because the 

path followed by tY  consists of random “steps” tu , that path is a 

“random walk”. 

 

If 1t t tY Y u   with 1 2( | , ,...) 0t t tE u Y Y   , then taking the expectation 

of both sides of 1t t tY Y u   yields: 

 

1 2 1 1 2

0

( | , ,...) ( | , ,...)t t t t t t tE Y Y Y Y E u Y Y       

 

1 2 1( | , ,...)t t t tE Y Y Y Y    

 

which means that the conditional mean of tY  based on data trough 

time t-1 is 1tY  . In other words, if tY  follows a random walk, then the 

best forecast of tomorrow’s value is its value today. 

 

 The best known example:  Stock Prices 
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Some series have an obvious upward tendency in which case the best 

forecast of the series must include an adjustment for the tendency of 

the series to increase. This adjustment leads to an extension of the 

random walk model to include a tendency to move or “drift” in one 

direction or the other. This extension is referred to as a random walk 

with drift: 

 

 

0 1t t tY a Y u           (2) 

 

where 1 2( | , ,...) 0t t tE u Y Y    and 0a  is the “drift” in the random walk. 

If 0a >0, then tY  increases on average: 

 

1 0t t tY Y a u    

 

0t tY a u    

 

0

0

( ) ( )t tE Y a E u    

 

0( )tE Y a     [ Hence, tY  increases on average] 

 

 

In the random walk with drift model, the best forecast of the series 

tomorrow is the value of the series today plus the drift 0a  since: 

 

0 1t t tY a Y u    

 

and taking the expectation of both sides yields: 

 

1 2 0 1 1 2

0

( | , ,...) ( | , ,...)t t t t t t tE Y Y Y a Y E u Y Y        
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1 2 0 1( | , ,...)t t t tE Y Y Y a Y     

 

 

Example An example of a time series that can be described by this 

model can be: 

 

10.1t t tY Y u    

 

where its graph can be seen below (Judge and Hill, p.479): 

 

 
 

Notice how the time series data appear to “wandering” as well as 

“trending” upward. In general, random walk with drift models show 

definite trends either upwards (when the drift is positive, 0a >0) or 

downward (when the drift is negative, 0a <0) 

 

B. A Random Walk is Nonstationary 
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If tY  follows a random walk, then it is not stationary: the variance of a 

random walk increases over time, so the distribution of tY  changes 

over time.  

 

Consider 1t t tY Y u  , we can write: 

 

1 0 1Y Y u   
2

2 1 2 0 1 2 0 1
( ) tt

Y Y u Y u u Y u


        

............................................................. 

1 0 1

T

t t t tt
Y Y u Y u 
     

 

0 1

T

t tt
Y Y u


    

 

Hence a random walk model contains an initial value (often set to 

zero because it is so far in the past that its contribution to tY  is 

negligible), 0Y ,  plus a component of stochastic trend: 
1

T

tt
u

  

 

Recalling that the tu  are independent (since tu  is iid), taking the 

expectation and the variance of tY  yields: 

 

0 1 2

0

( ) [ ... ]t TE Y Y E u u u      

 

0( )tE Y Y   

 

1 2( ) ( ... )t TVar Y Var u u u     

 

since tu  is iid we can write: 

 

2 2 2

1 2( ) ( ) ( ) ... ( )

u u u

t TVar Y Var u Var u Var u

  

     
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2( ) .t uVar Y T    

 

On the other hand: 

 

0 1

T

t s t st
Y Y u 

   

 

1 2( ) ( ... )t s T sVar Y Var u u u      

 

since tu  is iid we can write: 

 

2 2 2

1 2( ) ( ) ( ) ... ( )

u u u

t s T sVar Y Var u Var u Var u

  

      

 
2( ) ( ).t s uVar Y T s     

 

In addition, 

 

0 0

( , ) [ ( )] [ ( )]t t s t t t s t s

Y Y

Cov Y Y E Y E Y E Y E Y     .  

 

1 1

0 0( , ) [ ] [ ]

T T

t t st t

t t s t t s

u u

Cov Y Y E Y Y E Y Y

 

   

 

 

 

1 2 1 2( , ) [ ... ] [ ... ]t t s T T sCov Y Y E u u u E u u u         

 
2 2 2

1 2( , ) [ ... ]t t s T sCov Y Y E u u u cross terms       

 
2 2 2

1 2

0 since no AC in

( , ) [ ] [ ] ... [ ] [ ]

t

t t s T s

u

Cov Y Y E u E u E u E cross terms 



      
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2 2 2

2 2 2

1 2( , ) [ ] [ ] ... [ ]

u u u

t t s T sCov Y Y E u E u E u

  

      

 
2( , ) ( ).t t s uCov Y Y T s     

 

The correlation coefficient (autocorrelation coefficient or 

autocorrelation function) of the series tY : 

 

( , )

( ) ( )

t t s
s

t t s

Cov Y Y

Var Y Var Y
 



  

2( ). u

s

T s 





2. uT  2( ). uT s 

 

 

1/2 1/2

( )

( )
s

T s

T T s






 

 
1/2

1/2

( )
s

T s

T



  

 

s

T s

T



   

 

This result play an important role in the detection of nonstationary 

series. For small values of s, the ratio 
T s

T


 is approximately equal to 

unity. However, as s increases the values of s will decline. Hence the 

sample autocorrelation function (correlogram
1
) for a random walk 

process will show a slight tendency to fall.  

 

                                      
1
 As you know, if we plot the sample correlations ˆ

s  against s we obtain what is called a 

correlogram and hence 
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Correlogram for 

stationary series 

 Correlogram for  

nonstationary series (Pure random walk) 

s (lags) AC  s (lags) AC 

1 0.900  1 0.997 

2 0.803  2 0.993 

3 0.718  3 0.990 

4 0.629  4 0.986 

5 0.545  5 0.983 

6 0.470  6 0.979 

7 0.408  7 0.975 

8 0.348  8 0.972 

9 0.299  9 0.968 

10 0.266  10 0.965 

 

  
 

 

As seen, there is a dramatic difference between the correlogram for 

the stationary series and the nonstationary series.  

 

For the stationary series the autocorrelations (correlation between tY  

and t sY  ) the column labeled AC in the table above, gradually die out, 

indicating that values further in the past are less correlated with the 

current value. 

 

For the nonstationary series, the AC in table does not die out rapidly 

at all. The correlation between tY  and 10tY   is 0.965. Hence visual 

inspection of these functions can be a fixed indicator of 

nonstationarity. 
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C. Random Walk with Drift 

 

Consider 0 1t t tY a Y u   , we can write: 

 

1 0 0 1Y a Y u    
2

2 0 1 2 0 0 0 1 2 0 0 1
( ) 2 tt

Y a Y u a a Y u u a Y u


            

............................................................. 

0 1 0 0 1

T

t t t tt
Y a Y u ta Y u 
       

 

0 0 1

T

t tt
Y Y a t u


     

 

Hence the value of Y at time t is made up of an initial value ( 0Y ) and 

the stochastic trend component (
1

T

tt
u

 ) and now a deterministic 

trend component ( 0a t ). It is called a deterministic trend since a fixed 

value 0a  is added for each time t.  

 

Hence the variable tY  wanders up and down (stochastic trend) as well 

as increases by a fixed amount at each time (deterministic trend).  

 

Recalling that the tu  are independent (since tu  is iid), taking the  

expectation and the variance of tY  yields: 

 

0 0 1

T

t tt
Y Y a t u


    

 

0 0 1 2( ) [ ... ]t TE Y Y a t E u u u       

 

and since tu  is iid, 1 2 1 2[ ... ] [ ] [ ] ... [ ]T TE u u u E u E u E u       . 
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0 0 1 2

0 0 0

( ) [ ] [ ] ... [ ]t TE Y Y a t E u E u E u       

 

0 0( )tE Y Y a t    

 

which is not constant, changes by t.  

 

As for the variance, taking the variance of both sides of 

0 1t t tY a Y u    yields: 

 

1 2( ) ( ... )t TVar Y Var u u u     

 

since tu  is iid we can write: 

 

2 2 2

1 2( ) ( ) ( ) ... ( )

u u u

t TVar Y Var u Var u Var u

  

     

 
2( ) .t uVar Y T    

 

Consequently, in the case of random walk with drift, both the constant 

mean and constant variance conditions for stationarity are violated.  
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Figure Z. Stochastic trend with and without drift (Cheremza) 

 

 

D. Random Walk with Drift and Trend 

 

We can extend the random walk model further by adding a time trend: 

 

0 1 2t t tY a Y a t u     

 

1 0 2 0 11Y a a Y u     

2 0 2 1 2 0 2 0 2 0 1 2

2

2 0 2 0 1

2 2 ( )

2 3 tt

Y a a Y u a a a a Y u u

Y a a Y u


           

   
 

............................................................. 

0 2 1 0 2 0 1

( 1)

2

T

t t t tt

t t
Y a a t Y u ta a Y u 

 
         

  

where we have used the formula for a sum of an arithmetic 

progression: 
( 1)

1 2 3 ...
2

t t
t


      

 

Hence: 
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0 0 2 1

( 1)

2

T

t tt

t t
Y Y a t a u



 
      

  

Here note that this new term of 2

( 1)

2

t t
a

 
  

 has the effect of 

strengthening the trend behavior. 

 

The mean and variance of a random walk with drift and trend are: 

 

0 0 2

( 1)
( )

2
t

t t
E Y a t Y a

 
      

 

 
2( ) .t uVar Y T    

 

Example  Consider 10.1 0.01t t tY Y t u     

 

The graph of this process is shown in the figure below. Note that the 

addition of a time trend variable t strengthens the trend behavior. 

 

 
 

 

 



ECON 302  - Introduction to Econometrics II      November 25, 2013 

METU - Department of Economics 

 

 

Lecture Notes of Dr. Ozan ERUYGUR  e-mail: oeruygur@gmail.com 

 

 

17 

References 

 

 Cameron, Samuel (2005) Econometrics, McGraw Hill, Berkshire. 

 Chauhan, S.P.S., (2009) Microeconomics: An Advanced Treatise, 

Eastern Economy Edition, New Delhi. 

 Dougherty, Christopher (2007) Introduction to Econometrics, 

Oxford, New York. 

 Erlat, Haluk (1997) Introduction to Econometrics, Chapter 6: 

Autocorrelation, Draft (corrected for misprints), Ankara. 

 Ezekiel, Mordecai (1938) The Cobweb Theorem, The Quarterly 

Journal of Economics, Vol. 52, No. 2, pp. 255-280. 

 Gujarati, D., and Porter (2011) Basic Econometrics, McGraw Hill, 

New York. 

 Hill, R. C., Griffiths, W. E., and Judge, G. G., (2001) 

Undergraduate Econometrics, Second Edition, Wiley, New York. 

 Kennedy, Peter (1998) A Guide to Econometrics, Fourth Edition, 

Blackwell, New york. 

 Stock, J., and Watson, M. M., (2012) Introduction to 

Econometrics, Third Edition, Pearson, Boston. 

 

 

 


