January 2014

Middle East Technical University Department of Economics ECON 302

Instructor: Dr. H. Ozan Eruygur Research Assistant: Fatma Taşdemir

PROBLEM SET 09 – SIMULTANEOUS EQUATIONS

Problem 1

From the model

$$Y_{1t} = \beta_{10} + \beta_{12}Y_{2t} + \gamma_{11}X_{1t} + u_{1t}$$

$$Y_{2t} = \beta_{20} + \beta_{21}Y_{1t} + \gamma_{22}X_{2t} + u_{2t}$$

the following reduced-form equations are obtained;

$$Y_{1t} = \Pi_{10} + \Pi_{11}X_{1t} + \Pi_{12}X_{2t} + w_t$$

$$Y_{2t} = \Pi_{20} + \Pi_{21}X_{1t} + \Pi_{22}X_{2t} + v_t$$

- a) Are the structural equations identified?
- b) What happens to identification if it is known *a priori* that $\gamma_{11} = 0$?
- c) Suppose that the estimated reduced-form equations are as follows:

$$\hat{Y}_{1t} = 4 + 3X_{1t} + 8X_{2t}$$
$$\hat{Y}_{2t} = 2 + 6X_{1t} + 10X_{2t}$$

- i. Obtain the values of the structural parameters β_{10} , β_{12} , γ_{11} , β_{20} , β_{21} and γ_{22} .
- ii. How would you test the null hypothesis that $\gamma_{11} = 0$?

Problem 2

From the model

$$Y_{1t} = \beta_{10} + \beta_{12}Y_{2t} + \gamma_{11}X_{1t} + u_{1t}$$

$$Y_{2t} = \beta_{20} + \beta_{21}Y_{1t} + u_{2t}$$

The following estimated reduced-form equations are obtained:

$$\hat{Y}_{1t} = 4 + 8X_{1t}$$

 $\hat{Y}_{2t} = 2 + 12X_{1t}$

1

- a) Obtain the values of the structural parameters β_{10} , β_{12} , γ_{11} , β_{20} , and β_{21} .
- b) How does the answer to (a) change if it is known a priori that (1) $\beta_{12} = 0$ and (2) $\beta_{10} = 0$?

Problem 3

Table below is a model in five equations with five endogenous variables Y and four exogenous variables X:

Equation no.	Coefficients of the variables								
	<i>Y</i> ₁	Y ₂	Y ₃	<i>Y</i> ₄	Y ₅	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
1	1	β_{12}	0	β_{14}	0	γ ¹¹	0	0	¥14
2	0	1	β_{23}	β_{24}	0	0	Y22	Y23	0
3	β_{31}	0	1	β_{34}	β_{35}	0	0	Y33	}∕ 34
4	0	β42	0	1	0	γ 41	0	γ ₄₃	0
5	β_{51}	0	0	β_{54}	1	0	γ ⁵²	γ⁄53	0

Determine the identifiability of each equation with the aid of the order and rank conditions of identifications.

Problem 4

Consider the following demand-and-supply model for money;

$$M_t^d = \beta_0 + \beta_1 Y_t + \beta_2 R_t + \beta_3 P_t + u_t$$
$$M_t^s = \alpha_0 + \alpha_1 Y_t + u_{2t}$$

where M=money Y=income R=rate of interest P=price

- a) Is the demand function identified?
- b) Is the supply function identified?
- c) Which method would you use to estimate the parameters of the identified equation(s)?
- d) Suppose we modify supply function by adding explanatory variables Y_{t-1} & M_{t-1}. What happens to the identification problem? Would you still use the method you used in (c)?

Problem 5

Consider the following model:

$$R_t = \beta_0 + \beta_1 M_t + \beta_2 Y_t + u_{1t}$$
$$Y_t = \alpha_0 + \alpha_1 R_t + u_{2t}$$

where M_t (money supply) is exogenous, R_t is the interest rate, and Y_t is GDP.

- a) Are the equations identified?
- a) Which method would you use to estimate the parameters of the identified equation(s)?

Problem 6

Consider the following model

$$R_{t} = \beta_{0} + \beta_{1}M_{t} + \beta_{2}Y_{t} + \beta_{3}Y_{t-1} + u_{1t}$$
$$Y_{t} = \alpha_{0} + \alpha_{1}R_{t} + u_{2t}$$

- b) Find out if the system is identified.
- c) Which method would you use to estimate the parameters of the identified equation(s)?

Problem 7

You are given the following model;

$$R_t = \beta_0 + \beta_1 M_t + \beta_2 Y_t + u_{1t}$$

$$Y_t = \alpha_0 + \alpha_1 R_t + \alpha_2 I_t + u_{2t}$$

where the variables are as defined in the previous exercise. Treating I (domestic investment) and M exogenously, determine the identification of the system. Which method would you use to estimate the parameters of the identified equation(s)?