1. Consider the model $$C_{t} = b_{0} + b_{1}C_{t-1} + b_{2}Y_{t} + \varepsilon_{1t}, \tag{1}$$ $$Y_t = I_t + C_t, (2)$$ $$I_{t} = a_{0} + a_{1}Y_{t} + a_{2}Y_{t-1} + a_{3}r_{t} + \varepsilon_{2t}, \tag{3}$$ where C, I, Y, and r are, respectively, consumer expenditures, investment, income, and the interest rate. Assume that ε_1 and ε_2 are not autocorrelated and are independent of r_t . - a. List the endogenous variables and the predetermined variables in the model. - b. How would you estimate equation (1)? - c. How would you estimate equation (3)? - 2. Take as a model of wage-price behavior: $$\dot{W}_t = a_0 + a_1(UN)_t + a_2\dot{P}_t + \varepsilon_{1t},$$ $$\dot{P}_t = b_0 + b_1\dot{M}_t + b_2(UN)_t + b_3\dot{W}_t + \varepsilon_{2t},$$ where \dot{W} = the percentage change in wages, UN = the rate of unemployment, \dot{P} = the percentage change in prices, \dot{M}_t = the percentage-change in the money supply, and ε_1 and ε_2 = disturbance terms. Assume that ε_{1t} and ε_{2t} have zero means, constant variances, are not auto-correlated, and are independent of $(UN)_t$ and \dot{M}_t . - a. Are the above equations identified? Explain. - b. Outline an estimation procedure for the identified equation. ## 3. Consider the model $$L_t = a_0 + a_1 W_t + a_2 S_t + u_{1t}, (1)$$ $$W_t = b_0 + b_1 L_t + b_2 P_t + u_{2t}, (2)$$ where L = the amount of labor employed, W = the wage rate, S = sales, P = a measure of the productivity of labor. - a. Obtain the reduced-form equations for L_t and W_t . - b. Outline a technique for estimating equation (1). 4. Assume that the demand for shoes by an individual is described by $$D_{it} = a_0 + a_1 P_t + a_2 D_{i(t-1)} + u_{it}, (1)$$ where D_{it} is the *i*th individual's demand for shoes at time t, and P_t is the price he faces. Suppose that $$u_{it} = \rho u_{i(t-1)} + \varepsilon_{it}, \qquad -1 < \rho < 1,$$ where ε_{it} has a zero mean, a constant variance, is not autocorrelated, and is independent of P_t and all of its lagged values. - a. Argue intuitively that the lagged dependent variable, $D_{i(t-1)}$ is correlated with the disturbance term. - b. Assume that equation (1) is not part of a system of equations. Demonstrate that it can nevertheless be estimated by TSLS. - 5. Consider the following multiple-regression model: $$Y_t = b_0 + b_1 X_{1t} + b_2 X_{2t} + u_{1t}, (1)$$ $$X_{2t} = c_0 + c_1 Y_t + u_{2t}. (2)$$ Show that, under our usual assumptions, $E(X_{2t}u_{1t}) \neq 0$. 6. Consider the wage-price model $$\dot{W}_t = a_0 + a_1 \dot{P}_t + a_2 (UN_t) + \varepsilon_{1t}, \tag{1}$$ $$\dot{P}_t = b_0 + b_1 \dot{W}_t + \varepsilon_{2t}, \tag{2}$$ where \vec{W} = the percentage change in money wages, \dot{P} = the percentage changes in prices, and UN = the rate of unemployment. - a. Show that TSLS will not "work" if we attempt to estimate equation (1). - b. Does the TSLS procedure also break down if we attempt to estimate equation (2)? Explain. - 7. Assume the following structural equation, which is part of a system of simultaneous equations: $$Y_{1t} = b_0 + b_1 X_{1t} + b_2 Y_{2t} + b_3 Y_{3t} + u_{1t},$$ where Y_{1t} , Y_{2t} , and Y_{3t} are endogenous variables, and X_{1t} is a predetermined variable. Suppose that the complete system of which this equation is a member contains ten additional predetermined variables. However, suppose that we have observations on only one of them, say X_2 . - a. Is the equation identified? Why or why not? - b. Can we estimate this equation by TSLS? Explain. - 8. Consider the two-equation model $$Y_{1t} = a_1 + b_1 X_t^2 + c_1 Y_{2t} + \varepsilon_{1t}, \tag{1}$$ $$Y_{2t} = a_2 + b_2 X_t + c_2 Y_{1t} + \varepsilon_{2t}, (2)$$ where X_t is a predetermined variable and ε_1 and ε_2 satisfy our standard assumptions. a. Are both equations identified? Why or why not? - b. Derive the reduced-form equations. - c. Outline a procedure for estimating the first equation in the above model. - 9. Suppose that private investment spending is such that $$I_{it} = a + b_1 r_{it} + b_2 S_{i(t-1)} + u_{it}, \qquad i = 1, ..., N,$$ $r_{it} = r_i + b_3 I_{it} + \varepsilon_{it},$ where I_{it} = investment expenditures of the *i*th firm at time *t*, r_{it} = the rate of interest it must pay for investment funds, $S_{t(t-1)}$ = its sales in period t-1, and $r_{\rm t}$ = the economy-wide average interest rate for investment funds. We assume that these N firms are large so that the level of their investment expenditure affects the interest rate they face. Assume the standard conditions concerning u_{it} and ε_{it} . Assume also that we have *only* cross-sectional data. - a. Discuss whether or not the equations are identified. - b. Obtain the reduced-form equation for Iit.